FEATURES

44 V supply maximum ratings $V_{s s}$ to $V_{D D}$ analog signal range Low on resistance (45Ω max) Low Δ Ron (5Ω max)

Low Ron match (4Ω max)
Low power dissipation
Fast switching times
ton < 175 ns
toff < 145 ns
Low leakage currents (5 nA max)
Low charge injection (10 pC max)
Break-before-make switching action

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC 1 INPUT
Figure 1.

APPLICATIONS

Audio and video switching
Battery-powered systems
Test equipment
Communication systems

GENERAL DESCRIPTION

The ADG333A is a monolithic CMOS device comprising four independently selectable SPDT switches. It is designed on an L^{2} MOS process, which provides low power dissipation yet achieves a high switching speed and a low on resistance.

The on resistance profile is very flat over the full analog input range, ensuring good linearity and low distortion when switching audio signals. High switching speed also makes the part suitable for video signal switching. CMOS construction ensures ultralow power dissipation, making the part ideally suited for portable, battery-powered instruments.

When they are on, each switch conducts equally well in both directions and has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge inject

[^0]
PRODUCT HIGHLIGHTS

1. Extended signal range.

The ADG333A is fabricated on an enhanced L^{2} MOS process, giving an increased signal range which extends to the supply rails.
2. Low power dissipation.
3. Low Ron.
4. Single-supply operation.

For applications where the analog signal is unipolar, the ADG333A can be operated from a single rail power supply. The part is fully specified with a single 12 V supply.

ADG333A

TABLE OF CONTENTS

Specifications.3Dual Supply 3
Single Supply

\qquad 4
Absolute Maximum Ratings 5
ESD Caution 5
Terminology6
Pin Configurations and Function Descriptions 7
REVISION HISTORY
3/05—Rev. 0 to Rev. A
Updated Format Universal
Changes to Specifications Tables 3
Updated Outline Dimensions 12
Changes to Ordering Guide 12
10/95-Revision 0: Initial Version
Typical Performance Characteristics 8
Test Circuits 10
Application Information 11
ADG333A Supply Voltages 11
Power Supply Sequencing 11
Outline Dimensions 12
Ordering Guide 12

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. ${ }^{1}$
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range Ron Δ Ron Ron Match	$\begin{aligned} & 20 \\ & 45 \end{aligned}$	$\begin{aligned} & V_{S S} \text { to } V_{D D} \\ & 45 \\ & 5 \\ & 4 \end{aligned}$	V Ω typ Ω max Ω max Ω max	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}$ $\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage Is (OFF) Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \pm 5 \end{aligned}$	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=+15.5 \mathrm{~V} \end{aligned}$ Figure 15 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}$ Figure 16
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current lind or linh^{2}		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.005 \\ & \pm 0.5 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{DD}
DYNAMIC CHARACTERISTICS ${ }^{2}$ ton toff Break-Before-Make Delay, topen Charge Injection OFF Isolation Channel-to-Channel Crosstalk C_{s} (OFF) $C_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{ON})$	90 80 10 2 10 72 85 7 26	$\begin{aligned} & 175 \\ & 145 \end{aligned}$	ns typ ns max ns typ ns max ns min pC typ pC max dB typ dB typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \text { Figure } 17 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \text { Figure } 17 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V} ; \text { Figure } 18 \\ & \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{D}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF} ; \\ & \mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} ; \text { Figure } 19 \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \mathrm{V}_{\mathrm{S}}=2.3 \mathrm{Vrms} ; \text { Figure } 20 \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \mathrm{V}_{\mathrm{S}}=2.3 \mathrm{Vrms} ; \text { Figure } 21 \end{aligned}$
POWER REQUIREMENTS IDD Iss $V_{D D} / V_{S S}$	$\begin{aligned} & 0.05 \\ & 0.25 \\ & 0.01 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 5 \\ & \pm 3 / \pm 20 \end{aligned}$	mA typ mA max μA typ $\mu \mathrm{A}$ max V min/V max	Digital inputs $=0 \mathrm{~V}$ or 5 V $\left\|\mathrm{V}_{\mathrm{DD}}\right\|=\left\|\mathrm{V}_{\mathrm{SS}}\right\|$

[^1]
ADG333A

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted. ${ }^{1}$
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range RON	35	0 V to V_{DD} 75		$\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}, 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}$
LEAKAGE CURRENTS Source OFF Leakage Is (OFF) Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \pm 5 \end{aligned}$	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=12.2 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}}=1 \mathrm{~V} / 12.2 \mathrm{~V} \end{aligned}$ Figure 15 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=12.2 \mathrm{~V} / 1 \mathrm{~V}$ Figure 16
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current linl or linh		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.005 \\ & \pm 0.5 \end{aligned}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{DD}
DYNAMIC CHARACTERISTICS² ton toff Break-Before-Make Delay, topen Charge Injection OFF Isolation Channel-to-Channel Crosstalk C_{s} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 110 \\ & 100 \\ & 10 \\ & 5 \\ & 72 \\ & 85 \\ & 12 \\ & 25 \end{aligned}$	$\begin{aligned} & 200 \\ & 180 \end{aligned}$	ns typ ns max ns typ ns max ns min ns min pC typ dB typ dB typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 17 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 17 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} ; \text { Figure } 18 \\ & \mathrm{~V}_{\mathrm{D}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{D}}=0 \mathrm{~W}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF} ; \\ & \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} ; \text { Figure } 19 \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \mathrm{V}_{\mathrm{S}}=1.15 \mathrm{Vrms} ; \text { Figure } 20 \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \mathrm{V}_{\mathrm{S}}=1.15 \mathrm{~V} \text { rms; Figure } 21 \end{aligned}$
POWER REQUIREMENTS IdD $V_{D D}$	$\begin{aligned} & 0.05 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.35 \\ & \pm 3 / \pm 30 \end{aligned}$	mA typ mA max V min/V max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=13.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$

${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Table 3.

Parameter	Min
$V_{D D}$ to $V_{S S}$	+44 V
$V_{D D}$ to GND	-0.3 V to +30 V
$V_{\text {ss }}$ to GND	+0.3 V to -30 V
Analog, Digital Inputs ${ }^{1}$	$V_{S S}-2 V \text { to } V_{D D}+2 V \text { or } 20 \mathrm{~mA},$ whichever occurs first
Continuous Current, S or D	20 mA
Peak Current, S or D (Pulsed at 1 ms, 10\% Duty Cycle Max)	40 mA
Operating Temperature Range	
Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
$\theta_{\text {JA, }}$, Thermal Impedance	
PDIP Package	$103^{\circ} \mathrm{C} / \mathrm{W}$
SOIC Package	$74^{\circ} \mathrm{C} / \mathrm{W}$
SSOP Package	$130^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec)	$260^{\circ} \mathrm{C}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

${ }^{1}$ Overvoltage at IN, S, or D is clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Truth Table

Logic	Switch A	Switch B
0	Off	On
1	On	Off

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADG333A

TERMINOLOGY

$\mathbf{R}_{\text {ON }}$
Ohmic resistance between D and S.
Δ Ron
Ron variation due to a change in the analog input voltage with a constant load current.

Ron Match

Difference between the Ron of any two channels.

Is (OFF)

Source leakage current with the switch off.

I_{D} (OFF)

Drain leakage current with the switch off.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O N})$

Channel leakage current with the switch on.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
Analog voltage on Terminals D, S.
Cs (OFF)
OFF switch source capacitance.

C_{D} (OFF)

OFF switch drain capacitance.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{s}(\mathrm{ON})$
ON switch capacitance.

ton

Delay between applying the digital control input and the output switching on.
toff
Delay between applying the digital control input and the output switching off.
topen
Break-before-make delay when switches are configured as a multiplexer.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\mathrm{INH}}\right)$
Input current of the digital input.

Crosstalk

A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation
A measure of unwanted signal coupling through an OFF switch.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. PDIP Pin Configuration

Figure 3. SOIC Pin Configuration

Figure 4. SSOP Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,10,11,20$	IN1, IN2, IN3, IN4	Logic Control Input.
$2,4,7,9,12,14$,	S1A, S1B, S2B, S2A,	Source Terminal. Can be an input or output.
17,19	S3A, S3B, S4B, S4A	
$3,8,13,18$	D1, D2, D3, D4	Drain Terminal. Can be an input or output.
5	VSS	Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it can be
		connected to ground.
6	GND	Ground (0 V) Reference.
15	NC	No Connect.
16	Vos	Most Positive Power Supply Potential.

ADG333A

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. Ron as a Function of $V_{D}\left(V_{S}\right)$:
Dual Supply

Figure 6. Ron as a Function of $V_{D}\left(V_{s}\right)$:
Single Supply

Figure 7. Ron as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures: Dual Supply

Figure 8. Ron as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures: Single Supply

Figure 9. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$: Dual Supply

Figure 10. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$: Single Supply

Figure 11. Charge Injection as a Function of V_{S}

Figure 12. Switching Time as a Function of V_{D}

Figure 13. IDD as a Function of Switching Frequency

ADG333A

TEST CIRCUITS

Figure 14. On Resistance

Figure 15. Off Leakage

Figure 16. On Leakage

Figure 17. Switching Times

Figure 18. Break-Before-Make Delay, topen

Figure 19. Charge Injection

APPLICATION INFORMATION

ADG333A SUPPLY VOLTAGES

The ADG333A can operate from a dual or signal supply. Vss should be connected to GND when operating with a single supply. When using a dual supply, the ADG333A can also operate with unbalanced supplies; for example $V_{D D}=20 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{SS}}=-5 \mathrm{~V}$. The only restrictions are that V_{DD} to GND must not exceed $30 \mathrm{~V}, \mathrm{~V}_{\text {sS }}$ to GND must not drop below -30 V , and V V_{DD} to $\mathrm{V}_{\text {ss }}$ must not exceed +44 V . It is important to remember that the ADG333A supply voltage directly affects the input signal range, the switch on resistance and the switching times of the part. The effects of the power supplies on these characteristics can be clearly seen from the Typical Performance Characteristics curves.

POWER SUPPLY SEQUENCING

When using CMOS devices, care must be taken to ensure correct power-supply sequencing. Incorrect power-supply sequencing can result in the device being subjected to stresses beyond those listed in the Absolute Maximum Ratings. This is also true for the ADG333A. Always turn on $V_{D D}$ first, followed by V_{ss} and the logic signals. An external signal within the maximum specified ratings can then be safely presented to the source or drain of the switch

ADG333A

OUTLINE DIMENSIONS

[^0]: Rev. A
 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^1]: ${ }^{1}$ Temperature range is as follows: B version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design; not subject to production test.

