FEATURES

Microprocessor Compatible (6800, 8085, Z80, Etc.)
TTL/CMOS Compatible Inputs
On-Chip Data Latches
Endpoint Linearity
Low Power Consumption
Monotonicity Guaranteed (Full Temperature Range) Latch Free (No Protection Schottky Required)

APPLICATIONS

Microprocessor Controlled Gain Circuits Microprocessor Controlled Attenuator Circuits Microprocessor Controlled Function Generation Precision AGC Circuits
Bus Structured Instruments

GENERAL DESCRIPTION

The AD 7524 is a low cost, 8 -bit monolithic C M OS D AC designed for direct interface to most microprocessors.
Basically an 8-bit DAC with input latches, the AD 7524's load cycle is similar to the "write" cycle of a random access memory. U sing an advanced thin-film on CM OS fabrication process, the AD 7524 provides accuracy to 1/8 LSB with a typical power dissipation of less than 10 milliwatts.
A newly improved design eliminates the protection Schottky previously required and guarantees T TL compatibility when using a +5 V supply. L oading speed has been increased for compatibility with most microprocessors.
Featuring operation from +5 V to +15 V , the AD 7524 interfaces directly to most microprocessor buses or output ports.
Excellent multiplying characteristics (2- or 4-quadrant) make the AD 7524 an ideal choice for many microprocessor controlled gain setting and signal control applications.

REV. B

[^0]FUNCTIONAL BLOCK DIAGRAM

ORDERING GUIDE

Model ${ }^{\mathbf{1}}$	Temperature Range	Nonlinearity $\mathbf{(\mathbf { V } _ { \text { dD } } = + \mathbf { 1 5 } \text { V) }}$	Package Option
AD 7524JN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{N}-16$
AD 7524K N	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 4 \mathrm{LSB}$	$\mathrm{N}-16$
AD 7524L N	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 8 \mathrm{LSB}$	$\mathrm{N}-16$
AD 7524JP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{P}-20 \mathrm{~A}$
AD 7524K P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 4 \mathrm{LSB}$	$\mathrm{P}-20 \mathrm{~A}$
AD 7524LP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 8 \mathrm{LSB}$	$\mathrm{P}-20 \mathrm{~A}$
AD 7524JR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{R}-16 \mathrm{~A}$
AD 7524AQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{Q}-16$
AD 7524BQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 4 \mathrm{LSB}$	$\mathrm{Q}-16$
AD 7524C	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 8 \mathrm{LSB}$	$\mathrm{Q}-16$
AD 7524SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{Q}-16$
AD 7524T Q	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 4 \mathrm{LSB}$	$\mathrm{Q}-16$
AD 7524U Q	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 8 \mathrm{LSB}$	$\mathrm{Q}-16$
AD 7524SE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{E}-20 \mathrm{~A}$
AD 7524T E	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 4 \mathrm{LSB}$	$\mathrm{E}-20 \mathrm{~A}$
AD 7524U E	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 8 \mathrm{LSB}$	$\mathrm{E}-20 \mathrm{~A}$

NOTES
${ }^{1}$ T o order M IL-ST D-883, C lass B processed parts, add/883B to part number. C ontact your local sales office for military data sheet. F or U.S. Standard M ilitary D rawing (SM D) see DESC drawing \#5962-87700.
${ }^{2} \mathrm{E}=$ Leadless C eramic C hip C arrier: $\mathrm{N}=$ Plastic DIP; P = Plastic Leaded Chip C arrier; Q = Cerdip; R = SOIC.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

AD7524- SPECIFICATIONS

Parameter	$\begin{gathered} \text { Limit, } \\ V_{D D}=+5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V} \end{aligned}$	Limit, $V_{D D}=5 V$	$\begin{aligned} & \Gamma_{\text {MIN }}, T_{M A X}{ }^{1} \\ & V_{D D}=+15 V \end{aligned}$	Units	Test Conditions/Comments
STATIC PERFORMANCE						
Resolution	8	8	8	8	Bits	
Relative Accuracy						
J, A, S Versions	$\pm 1 / 2$	LSB max				
K, B, T Versions	$\pm 1 / 2$	$\pm 1 / 4$	$\pm 1 / 2$	$\pm 1 / 4$	LSB max	
L, C, U Versions	$\pm 1 / 2$	$\pm 1 / 8$	$\pm 1 / 2$	$\pm 1 / 8$	LSB max	
M onotonicity	Guaranteed	Guaranteed	Guaranteed	Guaranteed		
G ain Error ${ }^{2}$	$\pm 21 / 2$	$\pm 11 / 4$	$\pm 31 / 2$	$\pm 11 / 2$	LSB max	
A verage G ain TC ${ }^{3}$	± 40	± 10	± 40	± 10	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	G ain TC M easured from $+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MIN }}$ or from $+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MAX }}$
DC Supply Rejection, ${ }^{3} \Delta \mathrm{G}$ ain/ $/ \mathrm{V} \mathrm{V}_{\text {D }}$	0.08	0.02	0.16	0.04	\% FSR/\% max	$\Delta \mathrm{V}_{\mathrm{DD}}= \pm 10 \%$
	0.002	0.001	0.01	0.005	\% FSR/\% typ	
Output Leakage Current						
Iout1 (Pin 1)	± 50	± 50	± 400	± 200	$n A \max$	DB0-DB7 $=0 \mathrm{~V} ; \overline{\mathrm{WR}}, \overline{\mathrm{CS}}=0 \mathrm{~V} ; \mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}$
$\mathrm{I}_{\text {OUT2 } 2}$ (Pin 2)	± 50	± 50	± 400	± 200	$n A \max$	$D B 0-\mathrm{DB7}=\mathrm{V}_{\mathrm{DD}} ; \overline{\mathrm{WR}}, \overline{\mathrm{CS}}=0 \mathrm{~V} ; \mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}$
DYNAMIC PERFORMANCE						
Output Current Settling Time ${ }^{3}$ (to $1 / 2 \mathrm{LSB}$)	400	250	500	350	ns max	OUT 1 Load $=100 \Omega, C_{E X T}=13 \mathrm{pF} ; \overline{\mathrm{WR}}, \overline{\mathrm{CS}}=$ 0 V ; DB0-DB7 $=0 \mathrm{~V}$ to V_{DD} to 0 V .

ABSOLUTE MAXIMUM RATINGS*

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted)
$V_{\text {DD }}$ to GND .. $0.3 \mathrm{~V},+17 \mathrm{~V}$
$V_{\text {RFB }}$ to GND . ± 25 V
$V_{\text {REF }}$ to GND . ± 25 V
Digital Input Voltage to GND 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
OUT 1, OUT 2 to GND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
*Stresses above those listed under "Absolute M aximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Power Dissipation (Any Package)	
To $+75^{\circ} \mathrm{C}$	450 mW
Derates above $75^{\circ} \mathrm{C}$ by	$6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating T emperature	
Commercial (J, K, L)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial (A, B, C)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (S, T, U)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
L ead T emperature (Soldering, 10 secs)	$+300^{\circ} \mathrm{C}$

AD7524

CIRCUIT DESCRIPTION

CIRCUIT INFORMATION

The AD 7524, an 8-bit multiplying D/A converter, consists of a highly stable thin film R-2R ladder and eight N -channel current switches on a monolithic chip. M ost applications require the addition of only an output operational amplifier and a voltage or current reference.
The simplified D/A circuit is shown in Figure 1. An inverted $R-2 R$ ladder structure is used-that is, the binarily weighted currents are switched between the OUT 1 and OUT 2 bus lines, thus maintaining a constant current in each ladder leg independent of the switch state.

Figure 1. Functional Diagram

EQUIVALENT CIRCUIT ANALYSIS

The equivalent circuit for all digital inputs LOW is shown in Figures 2. In Figure 2 with all digital inputs LOW, the reference current is switched to OUT2. The current source I LEAKAGE is composed of surface and junction leakages to the substrate while the $\frac{1}{256}$ current source represents a constant 1-bit current drain through the termination resistor on the R-2R ladder. The "ON" capacitance of the output N -channel switches is 120 pF , as shown on the OUT 2 terminal. The "OF F" switch capacitance is 30 pF , as shown on the OUT 1 terminal. A nalysis of the circuit for all digital inputs high is similar to Figure 2 however, the "ON" switches are now on terminal OUT 1, hence the 120 pF appears at that terminal.

Figure 2. AD7524 DAC Equivalent Circuit-All Digital Inputs Low

INTERFACE LOGIC INFORMATION MODE SELECTION

AD 7524 mode selection is controlled by the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ inputs.

WRITE MODE

When $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ are both LOW, the AD 7524 is in the WRIT E mode, and the AD 7524 analog output responds to data activity at the D B0-D B7 data bus inputs. In this mode, the AD 7524 acts like a nonlatched input D/A converter.

HOLD MODE

When either $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WR}}$ is HIGH, the AD 7524 is in the H OLD mode. The AD 7524 analog output holds the value corresponding to the last digital input present at DB0-D B7 prior to $\overline{\mathrm{WR}}$ or $\overline{\mathrm{CS}}$ assuming the HIGH state.

MODE SELECTION TABLE

$\overline{\overline{\mathbf{C S}}}$	$\overline{\mathbf{W R}}$	Mode	DAC Response
L	L	Write	DAC responds to data bus (D B0-D B7) inputs.
H	X	Hold	Data bus (D B0-D B7) is Locked Out:
X	H	Hold	DAC holds last data present when $\overline{\mathrm{WR}}$ or $\overline{\mathrm{CS}}$ assumed HIGH state.

$\mathrm{L}=$ Low State, $\mathrm{H}=\mathrm{H}$ igh State, $\mathrm{X}=\mathrm{D}$ on't C are.

WRITE CYCLE TIMING DIAGRAM

Figure 3. Supply Current vs. Logic Level T ypical plots of supply current, $I_{D D}$, versus logic input voltage, $V_{I N}$, for $V_{D D}=+5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}$ are shown above.

ANALOG CIRCUIT CONNECTIONS

Figure 4. Unipolar Binary Operation (2-Quadrant Multiplication)

Table I. Unipolar Binary CodeTable

Digital Input MSB LSB	Analog Output
11111111	$-V_{\text {REF }}(255 / 256)$
10000001	$-V_{\text {REF }}(129 / 256)$
10000000	$-V_{\text {REF }}(128 / 256)=-V_{\text {REF }} / 2$
01111111	$-V_{\text {REF }}(127 / 256)$
00000001	$-V_{\text {REF }}(1 / 256)$
00000000	$-V_{\text {REF }}(0 / 256)=0$

Note: 1 LSB $=\left(2^{-8}\right)\left(\mathrm{V}_{\text {REF }}\right)=1 / 256\left(\mathrm{~V}_{\text {REF }}\right)$
MICROPROCESSOR INTERFACE

Figure 6. AD7524/8085A Interface

Figure 5. Bipolar (4-Quadrant) Operation

Table II. Bipolar (Offset Binary) CodeTable

Digital Input MSB LSB
11111111
10000001
10000000
01111111
00000001
00000000
N ote: 1 LSB $=\left(2^{-7}\right)\left(V_{\text {REF }}\right)=1 / 128\left(V_{\text {REF }}\right)$

Figure 7. AD7524/MC6800 Interface

POWER GENERATION

Figure 8.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

20-Terminal Ceramic Leadless Chip Carrier (E-20A)

16-Lead Plastic DIP (Narrow)
($\mathrm{N}-16$)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

