Dual Current Input 20-Bit ANALOG-TO-DIGITAL CONVERTER

FEATURES

- MONOLITHIC CHARGE MEASUREMENT A/D CONVERTER

- DIGITAL FILTER NOISE REDUCTION: 3.2ppm, rms
- INTEGRAL LINEARITY: $\pm 0.005 \%$ Reading ± 0.5 ppm FSR
- HIGH PRECISION, TRUE INTEGRATING FUNCTION
- PROGRAMMABLE FULL-SCALE
- SINGLE SUPPLY
- CASCADABLE OUTPUT

DESCRIPTION

The DDC112 is a dual input, wide dynamic range, chargedigitizing analog-to-digital (A/D) converter with 20-bit resolution. Low-level current output devices, such as photosensors, can be directly connected to its inputs. Charge integration is continuous as each input uses two integrators; while one is being digitized, the other is integrating.
For each of its two inputs, the DDC112 combines current-tovoltage conversion, continuous integration, programmable full-scale range, A / D conversion, and digital filtering to achieve a precision, wide dynamic range digital result. In addition to the internal programmable full-scale ranges, external integrating capacitors allow an additional user-settable full-scale range of up to 1000 pC .
To provide single-supply operation, the internal A/D converter utilizes a differential input, with the positive input tied to $\mathrm{V}_{\text {REF }}$. When the integration capacitor is reset at the beginning of each integration cycle, the capacitor charges to $\mathrm{V}_{\text {REF }}$. This charge is removed in proportion to the input current. At the end of the integration cycle, the remaining voltage is compared to $\mathrm{V}_{\text {REF }}$.
The high-speed serial shift register which holds the result of the last conversion can be configured to allow multiple DDC112 units to be cascaded, minimizing interconnections. The DDC112 is available in an SO-28 or TQFP-32 package and is offered in two performance grades.

APPLICATIONS

- DIRECT PHOTOSENSOR DIGITIZATION
- CT SCANNER DAS
- INFRARED PYROMETER
- PRECISION PROCESS CONTROL
- LIQUID/GAS CHROMATOGRAPHY
- BLOOD ANALYSIS

Protected by US Patent \#5841310

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[^0]INSTRUMENTS www.ti.com

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

NOTE: (1) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION(1)

PRODUCT	MAXIMUM INTEGRAL LINEARITY ERROR	SPECIFICATION TEMPERATURE RANGE	PACKAGE-LEAD	PACKAGE DESIGNATOR	ORDERING NUMBER ${ }^{(2)}$	TRANSPORT MEDIA
DDC112U	$\pm 0.025 \%$ Reading $\pm 1.0 \mathrm{ppm}$ FSR	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \hline \end{gathered}$	SO-28	$\begin{gathered} \text { DW } \\ \text { " } \end{gathered}$	DDC112U DDC112U/1K	Rails Tape and Reel
DDC112UK	$\pm 0.025 \%$ Reading ± 1.0 ppm FSR "	$0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$	SO-28	DW	DDC112UK DDC112UK/1K	Rails Tape and Reel
DDC112Y	$\pm 0.025 \%$ Reading ± 1.0 ppm FSR	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} \text { TQFP-32 } \\ \text { " } \end{gathered}$	$\begin{aligned} & \text { PJT } \\ & " \end{aligned}$	DDC112Y/250 DDC112Y/2K	Tape and Reel Tape and Reel
DDC112YK	$\pm 0.025 \% \text { Reading } \pm 1.0 \mathrm{ppm} \text { FSR }$	$0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$	$\begin{gathered} \text { TQFP-32 } \\ \text { " } \end{gathered}$	$\begin{aligned} & \text { PJT } \\ & \text { " } \end{aligned}$	DDC112YK/250 DDC112YK/2K	Tape and Reel Tape and Reel

NOTES: (1) For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet. (2) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (/1K indicates 1000 devices per reel). Ordering 1000 pieces of DDC112U/1K will get a single 1000piece Tape and Reel.

ELECTRICAL CHARACTERISTICS

At $T_{A}=+25^{\circ} \mathrm{C}, A V_{D D}=D V_{D D}=+5 \mathrm{~V}, D D C 112 U, Y: T_{I N T}=500 \mu \mathrm{~s}, C L K=10 \mathrm{MHz}$, DDC112UK, $\mathrm{YK}: \mathrm{T}_{\text {INT }}=333.3 \mu \mathrm{~s}, \mathrm{CLK}=15 \mathrm{MHz}$, $\mathrm{V}_{\mathrm{REF}}=+4.096 \mathrm{~V}$, continuous mode operation, and internal integration capacitors, unless otherwise noted.

PARAMETER	CONDITIONS	DDC112U, Y			DDC112UK, YK			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
ANALOG INPUTS External, Positive Full-Scale Range 0 Internal, Positive Full-Scale Range 1 Range 2 Range 3 Range 4 Range 5 Range 6 Range 7 Negative Full-Scale Input	$C_{\text {EXT }}=250 \mathrm{pF}$	$\begin{gathered} 47.5 \\ 95 \\ 142.5 \\ 190 \\ 237.5 \\ 285 \\ 332.5 \\ -0 . \end{gathered}$	$\begin{gathered} 50 \\ 100 \\ 150 \\ 200 \\ 250 \\ 300 \\ 350 \\ \text { of Posit } \end{gathered}$	1000 52.5 105 157.5 210 262.5 315 367.5 FS	$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$	pC pC
DYNAMIC CHARACTERISTICS Conversion Rate Integration Time, $\mathrm{T}_{\text {INT }}$ Integration Time, $\mathrm{T}_{\mathrm{INT}}$ System Clock Input (CLK) Data Clock (DCLK)	Continuous Mode Non-Continuous Mode	$\begin{gathered} 500 \\ 50 \\ 1 \end{gathered}$	10	$\begin{gathered} 2 \\ 1,000,000 \\ 12 \\ 12 \end{gathered}$	$\begin{gathered} 333.3 \\ * \\ * \end{gathered}$	*	$\begin{aligned} & 3 \\ & * \\ & \\ & 15 \\ & 15 \end{aligned}$	kHz $\mu \mathrm{s}$ $\mu \mathrm{S}$ MHz MHz
ACCURACY Noise, Low-Level Current Input ${ }^{(1)}$ Differential Linearity Error Integral Linearity Error ${ }^{(4)}$ No Missing Codes Input Bias Current Range Error Range Error Match ${ }^{(5)}$ Range Sensitivity to $\mathrm{V}_{\text {REF }}$ Offset Error Offset Error Match(5) DC Bias Voltage(${ }^{6}$ (Input V_{OS}) Power-Supply Rejection Ratio Internal Test Signal Internal Test Accuracy	$\mathrm{C}_{\text {SENSOR }}{ }^{(2)}=0 \mathrm{pF}$, Range 5 (250pC) $\mathrm{C}_{\text {SENSOR }}=25 \mathrm{pF}$, Range $5(250 \mathrm{pC})$ $\mathrm{C}_{\text {SENSOR }}=50 \mathrm{pF}$, Range $5(250 \mathrm{pC})$ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Range 5 (250pC) All Ranges $V_{\text {REF }}=4.096 \pm 0.1 \mathrm{~V}$ Range 5, (250pC)	$\begin{array}{c\|c} 3.2 & \\ 3.8 & \\ 4.2 & 6.0 \\ \pm 0.005 \% \text { Reading } \pm 0.5 \mathrm{ppm} \\ \text { FSR (max) } \\ \pm 0.005 \% \text { Reading } \pm 0.5 \mathrm{ppm} \\ \text { FSR (typ) } \\ \pm 0.025 \% \text { Reading } \pm 1.0 \mathrm{ppm} \\ \text { FSR (max) } \end{array}$		$\begin{gathered} 6.0 \\ \pm \pm 0.5 \mathrm{ppm} \\ \pm 0.5 \mathrm{ppm} \\ \pm 1.0 \mathrm{ppm} \\ \\ 10 \\ 5 \\ 0.5 \\ \\ \\ \pm 2 \\ \pm 200 \end{gathered}$		$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} 7 \\ * \\ \\ * \\ * \\ * \\ * \\ \pm 600 \\ * \\ * \end{gathered}$	ppm of $\mathrm{FSR}^{(3)}$, rms ppm of FSR, rms ppm of FSR, rms
PERFORMANCE OVER TEMPE Offset Drift Offset Drift Stability DC Bias Voltage Drift Input Bias Current Drift Input Bias Current Range Drift ${ }^{(7)}$ Range Drift Match(5)	TURE Applied to Sensor Input $\begin{gathered} +25^{\circ} \mathrm{C} \text { to }+45^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}}=+75^{\circ} \mathrm{C} \end{gathered}$ Range 5 (250pC) Range 5 (250pC)		$\begin{gathered} \pm 0.5 \\ \pm 0.2 \\ 3 \\ 0.01 \\ 2 \\ 25 \\ \pm 0.05 \end{gathered}$	$1(10)$ 50	0	$\begin{gathered} * \\ \pm 1 \\ * \\ * \\ * \\ 25 \\ * \end{gathered}$	$\begin{gathered} \pm 3^{(10)} \\ \pm 0.7^{(10)} \\ \\ * \\ * \\ 50^{(10)} \end{gathered}$	ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$ ppm of FSR/minute $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mathrm{pA} /{ }^{\circ} \mathrm{C}$ pA $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
REFERENCE Voltage Input Current ${ }^{(8)}$	$\mathrm{T}_{\text {INT }}=500 \mu \mathrm{~s}$	4.000	$\begin{gathered} 4.096 \\ 150 \\ \hline \end{gathered}$	4.200	*	$\begin{gathered} * \\ 225 \end{gathered}$	$\begin{gathered} * \\ 275 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mu \mathrm{~A} \\ \hline \end{gathered}$
DIGITAL INPUT/OUTPUT Logic Levels V_{IH} $\mathrm{V}_{\text {IL }}$ V_{OH} V_{OL} Input Current, $\mathrm{I}_{\mathbb{N}}$ Data Format ${ }^{(9)}$	$\begin{aligned} \mathrm{I}_{\mathrm{OH}} & =-500 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OL}} & =500 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 4.0 \\ -0.3 \\ 4.5 \\ -10 \end{gathered}$		$\begin{gathered} \mathrm{DV}_{\mathrm{DD}}+0.3 \\ +0.8 \\ \\ \\ 0.4 \\ +10 \end{gathered}$	* * * *	*	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \end{gathered}$
POWER-SUPPLY REQUIREMEN Power-Supply Voltage Supply Current Analog Current Digital Current Total Power Dissipation	s $A V_{D D} \text { and } D V_{D D}$ $\begin{aligned} & A V_{D D}=+5 \mathrm{~V} \\ & \mathrm{DV} \mathrm{DD}=+5 \mathrm{~V} \end{aligned}$	4.75	$\begin{gathered} 14.8 \\ 1.2 \\ 80 \end{gathered}$	5.25 100	*	$\begin{gathered} 15.2 \\ 1.8 \\ 85 \end{gathered}$	130	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \mathrm{~mW} \end{gathered}$
TEMPERATURE RANGE Specified Performance Storage		$\begin{aligned} & -40 \\ & -60 \\ & \hline \end{aligned}$		$\begin{array}{r} +85 \\ +100 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & * \end{aligned}$		$\begin{gathered} +70 \\ * \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

* Specifications same as DDC112U, Y.

NOTES: (1) Input is less than 1% of full scale. (2) $\mathrm{C}_{\text {SENSOR }}$ is the capacitance seen at the DDC112 inputs from wiring, photodiode, etc. (3) FSR is Full-Scale Range. (4) A best-fit line is used in measuring linearity. (5) Matching between side A and side B, not input 1 to input 2. (6) Voltage produced by the DDC112 at its input which is applied to the sensor. (7) Range drift does not include external reference drift. (8) Input reference current decreases with increasing $\mathrm{T}_{\text {INT }}$ (see the Voltage Reference section). (9) Data format is Straight Binary with a small offset (see the Data Retrieval section). (10) Ensured by design but not production tested.

PIN CONFIGURATION

PIN DESCRIPTIONS

PIN	LABEL	DESCRIPTION
1	IN1	Input 1: analog input for Integrators 1A and 1B. The integrator that is active is set by the CONV input.
2	AGND	Analog Ground
3	CAP1B	External Capacitor for Integrator 1B
4	CAP1B	External Capacitor for Integrator 1B
5	CAP1A	External Capacitor for Integrator 1A
6	CAP1A	External Capacitor for Integrator 1A
7	$\mathrm{AV}_{\mathrm{DD}}$	Analog Supply, +5V Nominal
8	TEST	Test Control Input. When HIGH, a test charge is applied to the A or B integrators on the next CONV transition.
9	CONV	Controls which side of the integrator is connected to input. In continuous mode; CONV HIGH \rightarrow side A is integrating, CONV LOW \rightarrow side B is integrating. CONV must be synchronized with CLK (see Figure 2).
10	CLK	System Clock Input, 10MHz Nominal
11	DCLK	Serial Data Clock Input. This input operates the serial I/ O shift register.
12	$\overline{\text { DXMIT }}$	Serial Data Transmit Enable Input. When LOW, this input enables the internal serial shift register.
13	DIN	Serial Digital Input. Used to cascade multiple DDC112s.
14	DV ${ }_{\text {D }}$	Digital Supply, +5V Nominal
15	DGND	Digital Ground
16	DOUT	Serial Data Output, Hi-Z when $\overline{\text { DXMIT }}$ is HIGH
17	$\overline{\text { DVALID }}$	Data Valid Output. A LOW value indicates valid data is available in the serial I/O register.
18	RANGE0	Range Control Input 0 (least significant bit)
19	RANGE1	Range Control Input 1
20	RANGE2	Range Control Input 2 (most significant bit)
21	AGND	Analog Ground
22	$V_{\text {REF }}$	External Reference Input, +4.096 V Nominal
23	CAP2A	External Capacitor for Integrator 2A
24	CAP2A	External Capacitor for Integrator 2A
25	CAP2B	External Capacitor for Integrator 2B
26	CAP2B	External Capacitor for Integrator 2B
27	AGND	Analog Ground
28	IN2	Input 2: analog input for Integrators 2A and 2B. The integrator that is active is set by the CONV input.

TYPICAL CHARACTERISTICS

At $T_{A}=+25^{\circ} \mathrm{C}$, characterization done with Range $5(250 \mathrm{pC}), \mathrm{T}_{\mathrm{INT}}=500 \mu \mathrm{~s}, \mathrm{~V}_{\mathrm{REF}}=+4.096, A V_{D D}=D V_{D D}=+5 \mathrm{~V}$, and $C L K=10 \mathrm{MHz}$, unless otherwise noted.

THEORY OF OPERATION

The basic operation of the DDC112 is illustrated in Figure 1. The device contains two identical input channels where each performs the function of current-to-voltage integration followed by a multiplexed analog-to-digital (A/D) conversion. Each input has two integrators so that the current-to-voltage integration can be continuous in time. The output of the four integrators are switched to one delta-sigma ($\Delta \Sigma$) converter via a four input multiplexer. With the DDC112 in the continuous integration mode, the output of the integrators from one side of both of the inputs will be digitized while the other two integrators are in the integration mode as illustrated in the timing diagram in Figure 2. This integration and A / D conversion process is controlled by the system clock, CLK. With a 10 MHz system clock, the integrator combined with the deltasigma converter accomplishes a single 20-bit conversion in approximately $220 \mu \mathrm{~s}$. The results from side A and side B of each signal input are stored in a serial output shift register.

The DVALID output goes LOW when the shift register contains valid data.

The digital interface of the DDC112 provides the digital results via a synchronous serial interface consisting of a data clock (DCLK), a transmit enable pin ($\overline{\mathrm{DXMIT}}$), a valid data pin ($\overline{\text { DVALID }}$), a serial data output pin (DOUT), and a serial data input pin (DIN). The DDC112 contains only one A/D converter, so the conversion process is interleaved between the two inputs, as shown in Figure 2. The integration and conversion process is fundamentally independent of the data retrieval process. Consequently, the CLK frequency and DCLK frequencies need not be the same. DIN is only used when multiple converters are cascaded and should be tied to DGND otherwise. Depending on $T_{I N T}$, CLK, and DCLK, it is possible to daisy-chain over 100 converters. This greatly simplifies the interconnection and routing of the digital outputs in cases where a large number of converters are needed.

FIGURE 1. Block Diagram.

FIGURE 2. Basic Integration and Conversion Timing for the DDC112 (continuous mode).

FIGURE 4. Basic Integrator Timing Diagram as Illustrated in Figure 3.

FIGURE 5. Diagrams for the Four Configurations of the Front End Integrators of the DDC112.

A low-pass filter to reduce noise connects it to an operational amplifier configured as a buffer. This amplifier should have a unity-gain bandwidth greater than 4 MHz , low noise, and input/output common-mode ranges that support $\mathrm{V}_{\text {REF }}$. Following the buffer are capacitors placed close to the DDC112 $\mathrm{V}_{\text {REF }}$ pin. Even though the circuit in Figure 6 might appear to be unstable due to the large output capacitors, it works well for most operational amplifiers. It is NOT recommended that series resistance be placed in the output lead to improve stability since this can cause droop in $V_{\text {REF }}$ which produces large offsets.

DDC112 Frequency Response

The frequency response of the DDC112 is set by the front end integrators and is that of a traditional continuous time integrator, as shown in Figure 7. By adjusting $\mathrm{T}_{\mathrm{INT}}$, the user can change the 3dB bandwidth and the location of the notches in the response. The frequency response of the $\Delta \Sigma$ converter that follows the front end integrator is of no consequence because the converter samples a held signal from the integrators. That is, the input to the $\Delta \Sigma$ converter is always a DC signal. Since the output of the front end integrators are sampled, aliasing can occur. Whenever the frequency of the input signal exceeds one-half of the sampling rate, the signal will fold back down to lower frequencies.

Test Mode

When TEST is used, pins IN1 and IN2 are grounded and packets of approximately 13pC charge are transferred to the

FIGURE 7. Frequency Response of the DDC112.
integration capacitors of both Input 1 and Input 2. This fixed charge can be transferred to the integration capacitors either once during an integration cycle or multiple times. In the case where multiple packets are transferred during one integration period, the $13 p \mathrm{C}$ charge is additive. This mode can be used in both the continuous and noncontinuous mode timing. The timing diagrams for test mode are shown in Figure 8. The top three lines in Figure 8 define the timing when one packet of $13 p C$ is sent to the integration capacitors. The bottom three lines define the timing when multiple packets are sent to the integration capacitors.

FIGURE 8. Timing Diagram of the Test Mode of the DDC112.

SYMBOL	DESCRIPTION	CLK $=10 \mathrm{MHz}$			CLK $=15 \mathrm{MHz}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
t_{1}	Setup Time for Test Mode Enable	100			100			ns
t_{2}	Setup Time for Test Mode Disable	100			100			ns
t_{3}	Hold Time for Test Mode Enable	100			100			ns
t_{4}	From Rising Edge of TEST to the Edge of CONV while Test Mode Enabled	5.4			3.6			$\mu \mathrm{s}$
t_{5}	Rising Edge to Rising Edge of TEST	5.4			3.6			$\mu \mathrm{s}$

TABLE III. Timing for the DDC112 in the Test Mode.

During the cont mode, mbsy is not active when CONV toggles. The non-integrating side is always ready to begin integrating when the other side finishes its integration. Consequently, keeping track of the current status of CONV is all that is needed to know the current state. Cont mode operation corresponds to states 3-6. Two of the states, 3 and 6, only perform an integration (no $\mathrm{m} / \mathrm{r} / \mathrm{az}$ cycle).
mbsy becomes important when operating in the ncont mode; states $1,2,7$, and 8 . Whenever CONV is toggled while mbsy is active, the DDC112 will enter or remain in either ncont state 1 (or 8). After mbsy goes inactive, state 2 (or 7) is entered. This state prepares the appropriate side for integration. As mentioned above, in the ncont states, the inputs to the DDC112 are grounded.
One interesting observation from the state diagram is that the integrations always alternate between sides A and B . This relationship holds for any CONV pattern and is independent of the mode. States 2 and 7 insure this relationship during the ncont mode.
When power is first applied to the DDC112, the beginning state is either 1 or 8 , depending on the initial level of CONV. For CONV held HIGH at power-up, the beginning state is 1 . Conversely, for CONV held LOW at power-up, the beginning state is 8 . In general, there is a symmetry in the state diagram between states 1-8, 2-7, 3-6, and 4-5. Inverting CONV results in the states progressing through their symmetrical match.

TIMING EXAMPLES

Cont Mode

A few timing diagrams will now be discussed to help illustrate the operation of the state machine. These are shown in Figures 10 through 19. Table V gives generalized timing specifications in units of CLK periods. Values in $\mu \mathrm{s}$ for

Table V can be easily found for a given CLK. For example, if $C L K=10 \mathrm{MHz}$, then a CLK period $=0.1 \mu \mathrm{~s} . \mathrm{t}_{6}$ in Table V would then be $479.4 \mu \mathrm{~s}$.

SYMBOL	DESCRIPTION	VALUE (CLK periods)	
t_{6}	Cont mode m/r/az cycle.	4794	
t_{7}	Cont mode data ready.	4212	$\left(\mathrm{t}_{\text {INT }}>4794\right)$
		4212 ± 3	$\left(\mathrm{t}_{\mathrm{INT}}=4794\right)$
t_{8}	1st ncont mode data ready.	4212 ± 3	
t_{9}	2nd ncont mode data ready.	4548	
t_{10}	Ncont mode m/r/az cycle.	9108	

TABLE V. Timing Specifications Generalized in CLK Periods.

Figure 10 shows a few integration cycles beginning with initial power-up for a cont mode example. The top signal is CONV and is supplied by the user. The next line indicates the current state in the state diagram. The following two traces show when integrations and measurement cycles are underway. The internal signal mbsy is shown next. Finally, $\overline{\text { DVALID }}$ is given. As described in the data sheet, $\overline{\text { DVALID }}$ goes active LOW when data is ready to be retrieved from the DDC112. It stays LOW until DXMIT is taken LOW by the user. In Figure 10 and the following timing diagrams, it is assumed that $\overline{\text { DXMIT }}$ it taken LOW soon after DVALID goes LOW. The text below the DVALID pulse indicates the side of the data and arrows help match the data to the corresponding integration. The signals shown in Figures 10 through 19 are drawn at approximately the same scale.
In Figure 10, the first state is ncont state 1. The DDC112 always powers up in the ncont mode. In this case, the first state is 1 because CONV is initially HIGH. After the first two states, cont mode operation is reached and the states begin toggling between 4 and 5 . From now on, the input is being continuously integrated, either by side A or side B. The time needed for the $\mathrm{m} / \mathrm{r} / \mathrm{az}$ cycle, t_{6}, is the same time that

FIGURE 10. Continuous Mode Timing (CONV HIGH at power-up).

Ncont Mode

Figure 13 illustrates operation in the ncont mode. The integrations come in pairs (that is, sides A / B or sides B / A) followed by a time during which no integrations occur. During that time, the previous integrations are being measured, reset and auto-zeroed. Before the DDC112 can advance to states 3 or 6 , both sides A and B must be finished with the $\mathrm{m} / \mathrm{r} / \mathrm{az}$ cycle which takes time t_{10}. When the $\mathrm{m} / \mathrm{r} /$ az cycles are completed, time t_{11} is needed to prepare the next side for integration. This time is required for the ncont mode because the $\mathrm{m} / \mathrm{r} / \mathrm{az}$ cycle of the ncont mode is slightly different from that of the cont mode. After the first integration ends, $\overline{\text { DVALID }}$ goes LOW in time t_{8}. This is the
same time as in the cont mode. The second data will be ready in time t_{9} after the first data is ready. One result of the naming convention used in this application bulletin is that when the DDC112 is operating in the ncont mode, it passes through both ncont mode states and cont mode states. For example, in Figure 13, the state pattern is $3,4,1,2,3,4,1$, $2,3,4 \ldots$ where 3 and 4 are cont mode states. Ncont mode by definition means that for some portion of the time, neither side A nor B is integrating. States that perform an integration are labeled cont mode states while those that do not are called ncont mode states. Since integrations are performed in the ncont mode, just not continuously, some cont mode states must be used in an ncont mode state pattern.

SYMBOL	DESCRIPTION	VALUE (CLK = 10MHz)	VALUE (CLK = 15MHz)
t_{8}	1 st ncont mode data ready.	$421.2 \pm 0.3 \mu \mathrm{~s}$	$280.8 \pm 0.2 \mu \mathrm{~s}$
t_{9}	2nd ncont mode data ready.	$454.8 \mu \mathrm{~s}$	$303.2 \mu \mathrm{~s}$
t_{10}	Ncont mode m/r/az cycle.	$910.8 \mu \mathrm{~s}$	$607.2 \mu \mathrm{~s}$
t_{11}	Prepare side for integration.	$\geq 24.0 \mu \mathrm{~s}$	$\geq 24.0 \mu \mathrm{~s}$

FIGURE 13. Non-Continuous Mode Timing.

Looking at the state diagram, one can see that the CONV pattern needed to generate a given state progression is not unique. Upon entering states 1 or 8 , the DDC112 remains in those states until mbsy goes LOW, independent of CONV. As long as the m / r /az cycle is underway, the state machine ignores CONV (see Figure 9). The top two signals are different CONV patterns that produce the same state. This feature can be a little confusing at first, but it does allow flexibility in generating ncont mode CONV patterns. For example, the DDC112 Evaluation Fixture operates in the ncont mode by generating a square wave with pulse width $<\mathrm{t}_{6}$. Figure 17 illustrates operation in the ncont mode using
a 50% duty cycle CONV signal with $\mathrm{T}_{\mathrm{INT}}=1620$ CLK periods. Care must be exercised when using a square wave to generate CONV. There are certain integration times that must be avoided since they produce very short intervals for state 2 (or state 7 if CONV is inverted). As seen in the state diagram, the state progresses from 2 to 3 as soon as CONV is HIGH. The state machine does not insure that the duration of state 2 is long enough to properly prepare the next side for integration (t_{11}). This must be done by the user with proper timing of CONV. For example, if CONV is a square wave with $\mathrm{T}_{\text {INT }}=3042$ CLK periods, state 2 will only be 18 CLK periods long, therefore, t_{11} will not be met.

FIGURE 16. Equivalent CONV Signals in Non-Continuous Mode.

FIGURE 17. Non-Continuous Mode Timing with a 50\% Duty Cycle CONV Signal.

SPECIAL CONSIDERATIONS

NCONT MODE INTEGRATION TIME

The DDC112 uses a relatively fast clock. For CLK $=10 \mathrm{MHz}$, this allows $\mathrm{T}_{\text {INT }}$ to be adjusted in steps of 100 ns since CONV should be synchronized to CLK. However, for the internal measurement, reset and auto-zero operations, a slower clock is more efficient. The DDC112 divides CLK by six and uses this slower clock with a period of 600 ns to run the $\mathrm{m} / \mathrm{r} /$ az cycle and data ready logic.
Because of the divider, it is possible for the integration time to be a non-integer number of slow clock periods. For example, if $\mathrm{T}_{\text {INT }}=5000$ CLK periods $(500 \mu \mathrm{~s}$ for $\mathrm{CLK}=10 \mathrm{MHz}$), there will be $8331 / 3$ slow clocks in an integration period. This non-integer relationship between $\mathrm{T}_{\text {INT }}$ and the slow clock period causes the number of rising and falling slow clock edges within an integration period to change from integration to integration. The digital coupling of these edges to the integrators will in turn change from integration to integration which produces noise. The change in the clock edges is not random, but will repeat every 3 integrations. The coupling noise on the integrators appears as a tone with a frequency equal to the rate at which the coupling repeats.

To avoid this problem in cont mode, the internal slow clock is shut down after the $\mathrm{m} / \mathrm{r} / \mathrm{az}$ cycle is complete when it is no longer needed. It starts up again just after the next integration begins. Since the slow clock is always off when CONV toggles, the same number of slow clock edges fall within an integration period regardless of its length. Therefore, $\mathrm{T}_{\text {INT }} \geq 4794$ CLK periods will not produce the coupling problem described above.

For the ncont mode however, the slow clock must always be left running. The m/r/az cycle is not completed before an integration ends. It is then possible to have digital coupling to the integrators. The digital coupling noise depends heavily on the layout of the printed circuit board used for the DDC112. For solid grounds and power supplies with good bypassing, it is possible to greatly reduce the coupling. However, for ensuring the best performance in the ncont mode, the integration time should be chosen to be an integer multiple of $1 /\left(2 \mathrm{f}_{\text {sLowclock }}\right)$. For CLK $=10 \mathrm{MHz}$, the integration time should be an integer multiple of $300 \mathrm{~ns}-\mathrm{T}_{\mathrm{INT}}=100 \mu \mathrm{~s}$ is not. A better choice would be $\mathrm{T}_{\mathrm{INT}}=99 \mu \mathrm{~s}$.

DATA READY

The DVALID signal which indicates that data is ready is generated using the internal slow clock. The phase relationship between this clock and CLK is set when power is first applied and is random. Since CONV is synchronized with CLK, it will have a random phase relationship with respect to the slow clock. When $T_{I N T}>t_{6}$, the slow clock will temporarily shut down as described above. This shutdown process synchronizes the internal clock with CONV so that the time between when CONV toggles to when DVALID goes LOW (t_{7} and t_{8}) is fixed.

For $\mathrm{T}_{\text {INT }} \leq \mathrm{t}_{6}$, the internal slow clock, is not allowed to shut down and the synchronization never occurs. Therefore, the time between CONV toggling and DVALID indicating data is ready has uncertainty due to the random phase relationship between CONV and the slow clock. This variation is $\pm 1 /\left(2 \mathrm{f}_{\text {SLowcLock }}\right)$ or $\pm 3 / \mathrm{f}_{\text {CLK }}$. The timing to the second $\overline{\text { DVALID }}$ in the ncont mode will not have a variation since it is triggered off the first data ready (t_{9}) and both are derived from the slow clock.
Polling $\overline{\text { DVALID }}$ to determine when data is ready eliminates any concern about the variation in timing since the readback is automatically adjusted as needed. If the data readback is triggered off the toggling of CONV directly (instead of polling), then waiting the maximum value of t_{7} or t_{8} insures that data will always be ready before readback occurs.

Data Retrieval

In the continuous and noncontinuous modes of operation, the data from the last conversion is available for retrieval with the falling edge of DVALID (see Figure 22). The falling edge of DXMIT in combination with the data clock (DCLK) will initiate the serial transmission of the data from the DDC112. Typically, data is retrieved from the DDC112 as soon as DVALID falls and completed before the next CONV transition from HIGH to LOW or LOW to HIGH occurs. If this is not the case, care should be taken to stop activity on DCLK and consequently DOUT by at least $10 \mu \mathrm{~s}$ around a CONV transition. If this caution is ignored it is possible that the integration that is being initiated by CONV will have additional noise introduced.

The serial output data at DOUT is transmitted in Straight Binary Code per Table VIII. An output offset has been built into the DDC112 to allow for the measurement of input signals near and below zero. Board leakage up to $\approx-0.4 \%$ of the positive full-scale can be tolerated before the digital output clips to all zeroes.

CODE	INPUT SIGNAL
11111111111111111111	FS
11111111111111111110	FS -1 LSB
00000001000000000001	+1 LSB
00000001000000000000	Zero
00000000000000000000	-0.4% FS

TABLE VIII. Straight Binary Code Table.

Cascading Multiple Converters

Multiple DDC112 units can be connected in serial or parallel configurations, as illustrated in Figures 20 and 21.
DOUT can be used with DIN to daisy-chain several DDC112 devices together to minimize wiring. In this mode of operation, the serial data output is shifted through multiple DDC112s, as illustrated in Figure 20.
$\mathrm{R}_{\text {PULLup }}$ prevents DIN from floating when DXMIT is HIGH. Care should be taken to keep the capacitive load on DOUT as low as possible when running CLK=15MHz.

NOTE: (1) Disable DCLK (preferably LOW) when DXMIT is HIGH.

FIGURE 23. Timing Diagram When Using the DIN Function of the DDC112.

SYMBOL	DESCRIPTION	CLK $=10 \mathrm{MHz}$			CLK $=15 \mathrm{MHz}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
t_{24}	Set-Up Time From DIN to Rising Edge of DCLK	10			5			ns
t_{25}	Hold Time For DIN After Rising Edge of DCLK	10			10			ns
t_{26}	Hold Time for $\overline{\text { DXMIT }}$ HIGH Before Falling Edge of DVALID	2			1.33			$\mu \mathrm{s}$

TABLE X. Timing for the DDC112 Data Retrieval Using DIN.

RETRIEVAL BEFORE CONV TOGGLES (CONTINUOUS MODE)

This is the most straightforward method. Data retrieval begins soon after DVALID goes LOW and finishes before CONV toggles, see Figure 24. For best performance, data retrieval must stop t_{28} before CONV toggles. This method is the most appropriate for longer integration times. The maximum time available for readback is $T_{I N T}-t_{27}-t_{28}$. For DCLK and CLK $=10 \mathrm{MHz}$, the maximum number of DDC112s that can be daisy-chained together is:

$$
\frac{\mathrm{T}_{\mathrm{INT}}-431.2 \mu \mathrm{~s}}{40 \tau_{\mathrm{DCLK}}}
$$

Where $\tau_{\text {DCLK }}$ is the period of the data clock. For example, if $\mathrm{T}_{\text {INT }}=1000 \mu \mathrm{~s}$ and DCLK $=10 \mathrm{MHz}$, the maximum number of DDC112s is:

$$
\frac{1000 \mu \mathrm{~s}-431.2 \mu \mathrm{~s}}{(40)(100 \mathrm{~ns})}=142.2 \rightarrow 142 \text { DDC112s }
$$

RETRIEVAL AFTER CONV TOGGLES (CONTINUOUS MODE)

For shorter integration times, more time is available if data retrieval begins after CONV toggles and ends before the new data is ready. Data retrieval must wait t_{29} after CONV toggles before beginning. Figure 25 shows an example of this. The maximum time available for retrieval is $\mathrm{t}_{27}-\mathrm{t}_{29}-\mathrm{t}_{26}$ $(421.2 \mu \mathrm{~s}-10 \mu \mathrm{~s}-2 \mu \mathrm{~s}$ for $\mathrm{CLK}=10 \mathrm{MHz})$, regardless of $\mathrm{T}_{\mathrm{INT}}$. The maximum number of DDC112s that can be daisychained together is:

$$
\frac{409.2 \mu \mathrm{~s}}{40 \tau_{\mathrm{DCLK}}}
$$

For DCLK $=10 \mathrm{MHz}$, the maximum number of DDC112s is 102.

RETRIEVAL BEFORE AND AFTER CONV TOGGLES (CONTINUOUS MODE)

For the absolute maximum time for data retrieval, data can be retrieved before and after CONV toggles. Nearly all of $\mathrm{T}_{\text {INT }}$ is available for data retrieval. Figure 26 illustrates how this is done by combining the two previous methods. You must pause the retrieval during CONV toggling to prevent digital noise, as discussed previously, and finish before the next data is ready. The maximum number of DDC112s that can be daisy-chained together is:

$$
\frac{\mathrm{T}_{\mathrm{INT}}-20 \mu \mathrm{~s}-2 \mu \mathrm{~S}}{40 \tau_{\mathrm{DCLK}}}
$$

For $\mathrm{T}_{\text {INT }}=500 \mu \mathrm{~s}$ and $\mathrm{DCLK}=10 \mathrm{MHz}$, the maximum number of DDC112s is 119.

RETRIEVAL: NONCONTINUOUS MODE

Retrieving in noncontinuous mode is slightly different as compared with the continuous mode. As shown in Figure 27 and described in detail in Application Bulletin SBAA024
(available for download at www.ti.com), $\overline{\text { DVALID }}$ goes LOW in time t_{30} after the first integration completes. If $\mathrm{T}_{\text {INT }}$ is shorter than this time, all of t_{31} is available to retrieve data before the other side's data is ready. For $T_{I N T}>t_{30}$, the first integration's data is ready before the second integration completes. Data retrieval must be delayed until the second integration completes leaving less time available for retrieval. The time available is $t_{31}-\left(T_{I N T}-t_{30}\right)$. The second integration's data must be retrieved before the next round of integrations begin. This time is highly dependent on the pattern used to generate CONV. As with the continuous mode, data retrieval must halt before and after CONV toggles (t_{28} and t_{29}) and be completed before new data is ready $\left(\mathrm{t}_{26}\right)$.

POWER-UP SEQUENCING

Prior to power-up, all digital and analog input pins must be LOW. At the time of power-up, these signal inputs can be biased to a voltage other than OV , however, they should never exceed $A V_{D D}$ or $D V_{D D}$. The level of CONV at powerup is used to determine which side (A or B) will be integrated first. Before integrations can begin though, CONV must toggle; see Figure 28.

FIGURE 26. Readback Before and After CONV Toggles.

Input shielding practices should be taken into consideration when designing the circuit layout for the DDC112. The inputs to the DDC112 are high impedance and extremely sensitive to extraneous noise. Leakage currents between the PCB traces can exceed the input bias current of the DDC112 if shielding is not implemented. Figure 30 illustrates an acceptable approach to this problem. A PC ground plane is placed around the inputs of the DDC112. This shield helps minimize coupled noise into the input pins. Additionally, the pins that
are used for the external integration capacitors should be guarded by a ground plane when the external capacitors are used.

The approach above reduces leakage affects by surrounding these sensitive pins with a low impedance analog ground. Leakage currents from other portions of the circuit will flow harmlessly to the low impedance analog ground rather than into the analog input stage of the DDC112.

FIGURE 30. Recommended Shield for DDC112U Layout Design.

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	$\text { e Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
DDC112U	ACTIVE	SOIC	DW	28	20	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
DDC112U/1K	ACTIVE	SOIC	DW	28	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
DDC112U/1KG4	ACTIVE	SOIC	DW	28	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
DDC112UG4	ACTIVE	SOIC	DW	28	20	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
DDC112UK	ACTIVE	SOIC	DW	28	20	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
DDC112UK/1K	ACTIVE	SOIC	DW	28	1000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
DDC112UK/1KG4	ACTIVE	SOIC	DW	28	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
DDC112UKG4	ACTIVE	SOIC	DW	28	20	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
DDC112Y/250	ACTIVE	TQFP	PJT	32	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR
DDC112Y/250G4	ACTIVE	TQFP	PJT	32	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR
DDC112Y/2K	ACTIVE	TQFP	PJT	32	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
DDC112Y/2KG4	ACTIVE	TQFP	PJT	32	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR
DDC112YK/250	ACTIVE	TQFP	PJT	32	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR
DDC112YK/250G4	ACTIVE	TQFP	PJT	32	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR
DDC112YK/2K	ACTIVE	TQFP	PJT	32	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR
DDC112YK/2KG4	ACTIVE	TQFP	PJT	32	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1 (m)})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
DDC112U/1K	SOIC	DW	28	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1
DDC112UK/1K	SOIC	DW	28	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1
DDC112Y/250	TQFP	PJT	32	250	330.0	16.4	9.6	9.6	1.5	12.0	16.0	Q2
DDC112Y/2K	TQFP	PJT	32	2000	330.0	16.4	9.6	9.6	1.5	12.0	16.0	Q2
DDC112YK/250	TQFP	PJT	32	250	330.0	16.4	9.6	9.6	1.5	12.0	16.0	Q2
DDC112YK/2K	TQFP	PJT	32	2000	330.0	16.4	9.6	9.6	1.5	12.0	16.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DDC112U/1K	SOIC	DW	28	1000	346.0	346.0	49.0
DDC112UK/1K	SOIC	DW	28	1000	346.0	346.0	49.0
DDC112Y/250	TQFP	PJT	32	250	346.0	346.0	33.0
DDC112Y/2K	TQFP	PJT	32	2000	346.0	346.0	33.0
DDC112YK/250	TQFP	PJT	32	250	346.0	346.0	33.0
DDC112YK/2K	TQFP	PJT	32	2000	346.0	346.0	33.0

DW (R-PDSO-G28)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AE.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterace.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

[^0]: All trademarks are the property of their respective owners.

