

LMH6640 **TFT-LCD Single, 16V RRO High Output Current Operational Amplifier General Description Features**

The LMH6640 is a voltage feedback operational amplifier with rail-to-rail output drive capability of 110 mA. This, in combination with a supply range of up to 16V, makes the LMH6640 suitable for V_{COM} driver applications in TFT panels. The input common mode voltage range extends to 0.3V below V⁻ and to within 0.9V of V⁺, makes the LMH6640 a true single supply op-amp. The output voltage range extends to within 100 mV of either supply rail providing the user with a large dynamic range. Employing National's patented VIP10HV process, the LMH6640 delivers a bandwidth of 190 MHz at a current consumption of only 4 mA. The LMH6640 offers a slew rate of 170 V/µs resulting in a large signal bandwidth of approximately 35 MHz. Special precautions have been taken to ensure device stability under all operating voltages and loads. The result is a very well behaved frequency response characteristic for gain settings, including +1.

 $(V_S = 16V, R_L = 2 k\Omega \text{ to } V^+/2, \text{ Typical Values Unless Speci$ fied)

Output voltage swing	100 mV from rails
Input common mode voltage	–0.3V to 15.1V
 Supply current (no load) 	4 mA
Linear output current	±110 mA
Supply voltage range	4.5V to 16V
Unity gain stable	
■ -3 dB BW (A _V = +1)	190 MHz
Slew rate	170 V/µs
 Output resistance (closed loop 1 MHz) 	0.3Ω
■ Total Harmonic Distortion (f = 5 MHz)	–64 dBc
 Excellent overdrive recovery 	
 Differential gain 	0.12%
 Differential phase 	0.12°
SOT23-5 package	

Applications

TFT panel V_{COM} Driver

LMH6640 TFT-LCD Single, 16V RRO High Output Current Operational Amplifier

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
Human Body Model	2 KV
Machine Model	200V
V _{IN} Differential	±2.5V
Input Current	±10 mA
Supply Voltages (V ⁺ - V ⁻)	18V
Voltage at Input/Output Pins	V^+ +0.8V, V^- -0.8V
Storage Temperature Range	-65°C to +150°C

Junction Temperature (Note 4)	+150°C
Soldering Information	
Infrared or Convection (20 sec.)	235°C
Wave Soldering (10 sec.)	260°C

Operating Ratings (Note 3)

Supply Voltage (V ⁺ - V ⁻)	4.5V to 16V
Operating Temperature Range	-40°C to +85°C
(Note 4)	
Package Thermal Resistance (Note 4)	
5-Pin SOT23	265°C/W

5V Electrical Characteristics

Unless otherwise specified, All limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_O = V_{CM} = V^+/2$ and $R_L = 2 k\Omega$ to $V^+/2$. **Boldface** limits apply at temperature extremes. (Note 9)

Symbol	Parameter	Conditions		Min	Тур	Max	Units	
				(Note 6)	(Note 5)	(Note 6)		
BW	–3 dB Bandwidth	$A_V = +1 \ (R_L = 100\Omega)$			147		MUz	
		$A_V = -1 \ (R_L = 100\Omega)$			58		IVITIZ	
$BW_{0.1 \text{ dB}}$	0.1 dB Gain Flatness	$A_V = -3$			18		MHz	
LSBW	-3 dB Bandwidth	$A_{V} = +1, V_{O} = 2 V_{PP} (R_{L} = 1)$	Ι00Ω)		32		MHz	
GBW	Gain Bandwidth Product	$A_V = +1, (R_L = 100\Omega)$			59		MHz	
SR	Slew Rate (Note 8)	$A_V = -1$			170		V/µs	
e _n	Input Referred Voltage Noise		f = 10 kHz		19		nV/	
			f = 1 MHz		10		√Hz	
i _n	Input Referred Current Noise		f = 10 kHz		1.3		pA/	
			f = 1 MHz		0.9		√Hz	
THD	Total Harmonic Distortion	$f = 5 \text{ MHz}, V_O = 2 V_{PP}, A_V =$	= +2		-65		dBc	
		$R_L = 1 \ k\Omega$ to V ⁺ /2					420	
t _s	Settling Time	$V_{O} = 2 V_{PP}, \pm 0.1\%, A_{V} = -1$			35		ns	
V _{os}	Input Offset Voltage				1	5 7	mV	
Ι _Β	Input Bias Current (Note 7)	t (Note 7)			-1.2	-2.6		
						-3.25	25 ^{µA}	
l _{os}	Input Offset Current				34	800	nA	
						1400		
CMVR	Common Mode Input Voltage	CMRR ≥ 50 dB			-0.3	-0.2		
	Range					-0.1	V	
				4.0	4.1			
	Osmana Mada Daisatian Datia			3.6	00		-10	
	Common Mode Rejection Ratio	$V \leq V_{CM} \leq V' - 1.5V$	+/0	72	90		aв	
A _{VOL}	Large Signal Voltage Gain	$V_{O} = 4 V_{PP}, R_{L} = 2 K\Omega to V$./2	80	95			
			74	70		dB		
		$v_0 = 3.75 v_{PP}, H_L = 15002 \text{ to } V^2$		74	70			
Va	Output Swing High	$B_{\rm r} = 2 \text{ kO to } V^{+/2}$		4 90	4 94		+	
•0		$R_{\rm L} = 1500 \text{ to } V^{+/2}$		4.30	4.80			
	Output Swing Low	$R_{L} = 2 k\Omega \text{ to } V^{+}/2$		4.70	0.06	0.10	V	
		$R_{\rm c} = 1500$ to V ⁺ /2			0.00	0.25		
		11L - 10022 10 V /2			0.20	0.20		

5V Electrical Characteristics (Continued)

Unless otherwise specified, All limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_O = V_{CM} = V^+/2$ and $R_L = 2 k\Omega$ to $V^+/2$. Boldface limits apply at temperature extremes. (Note 9)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
			(Note 6)	(Note 5)	(Note 6)	
I _{sc}	Output Short Circuit Current	Sourcing to V ⁺ /2	100	130		
	(Note 3)		75			m۸
		Sinking from V ⁺ /2	100	130		ШA
			70			
I _{OUT}	Output Current	$V_{O} = 0.5V$ from either Supply		+75/-90		mA
PSRR	Power Supply Rejection Ratio	$4V \le V^+ \le 6V$	72	80		dB
I _S	Supply Current	No Load		3.7	5.5	mA
					8.0	
R _{IN}	Common Mode Input	$A_V = +1$, f = 1 kHz, $R_S = 1 M\Omega$		15		MO
	Resistance					10122
CIN	Common Mode Input	$A_V = +1, R_S = 100 \text{ k}\Omega$		1.7		nE
	Capacitance					pi
R _{OUT}	Output Resistance Closed Loop	$R_F = 10 \text{ k}\Omega, \text{ f} = 1 \text{ kHz}, A_V = -1$		0.1		0
		$R_F = 10 \text{ k}\Omega, \text{ f} = 1 \text{ MHz}, A_V = -1$		0.4		22
DG	Differential Gain	NTSC, $A_V = +2$		0.13		0/
		$R_L = 150\Omega$ to V ⁺ /2				70
DP	Differential Phase	NTSC, $A_V = +2$		0.10		dog
		$R_L = 150\Omega$ to V ⁺ /2				uey

16V Electrical Characteristics

Unless otherwise specified, All limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 16V$, $V^- = 0V$, $V_O = V_{CM} = V^+/2$ and $R_L = 2 \text{ k}\Omega$ to $V^+/2$. Boldface limits apply at temperature extremes. (Note 9)

Symbol	Parameter	Conditions		Min	Тур	Max	Units	
				(Note 6)	(Note 5)	(Note 6)		
BW	-3 dB Bandwidth	$A_V = +1 \ (R_L = 100\Omega)$			190		MH7	
		$A_V = -1 \ (R_L = 100\Omega)$	$A_V = -1 \ (R_L = 100\Omega)$		60		1011 12	
$BW_{0.1 \text{ dB}}$	0.1 dB Gain Flatness	$A_V = -2.7$			20		MHz	
LSBW	-3 dB Bandwidth	$A_V = +1, V_O = 2 V_{PP} (R_L =$	100Ω)		35		MHz	
GBW	Gain Bandwidth Product	$A_V = +1, (R_L = 100\Omega)$			62		MHz	
SR	Slew Rate (Note 8)	$A_V = -1$			170		V/µs	
e _n	Input Referred Voltage Noise		f = 10 kHz		20			
			f = 1 MHz		10		- nV/ √Hz	
i _n	Input Referred Current Noise		f = 10 kHz		1.0		– pA/ √Hz	
			f = 1 MHz		0.9			
THD	Total Harmonic Distortion	h f = 5 MHz, V _O = 2 V _{PP} , A _V = +2 R _L = 1 kΩ to V ⁺ /2			-64		dBc	
t _s	Settling Time	$V_{O} = 2 V_{PP}, \pm 0.1\%, A_{V} = -1$			35		ns	
Vos	Input Offset Voltage				1	5		
						7	IIIV	
I _B	Input Bias Current (Note 7)				-1	-2.6		
						-3.5	μΑ	
los	Input Offset Current				34	800	nA	
						1800		
CMVR	Common Mode Input Voltage	CMRR ≥ 50 dB			-0.3	-0.2	V	
	Range					-0.1		
				15.0	15.1			
				14.6				
CMRR	Common Mode Rejection Ratio	$V^- \le V_{CM} \le V^+ - 1.5V$		72	90		dB	

LMH6640

16V Electrical Characteristics (Continued)

Unless otherwise specified, All limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 16V$, $V^- = 0V$, $V_O = V_{CM} = V^+/2$ and $R_L = 2 k\Omega$ to $V^+/2$. **Boldface** limits apply at temperature extremes. (Note 9)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
			(Note 6)	(Note 5)	(Note 6)	
A _{VOL}	Large Signal Voltage Gain	$V_{O} = 15 V_{PP}$, $R_{L} = 2 k\Omega$ to V ⁺ /2	86	95		
			82			dD
		$V_{O} = 14 V_{PP}, R_{L} = 150\Omega$ to V ⁺ /2	74	78		uВ
			70			
Vo	Output Swing High	$R_L = 2 k\Omega$ to V ⁺ /2	15.85	15.90		
		$R_L = 150\Omega$ to V ⁺ /2	15.45	15.78		V
	Output Swing Low	$R_L = 2 k\Omega$ to V ⁺ /2		0.10	0.15	v
		$R_{L} = 150\Omega$ to V ⁺ /2		0.21	0.55	
I _{SC}	Output Short Circuit Current	Sourcing to V ⁺ /2	60	95		
	(Note 3)	-	30			
		Sinking from V ⁺ /2	50	75		mA
			15			
I _{OUT}	Output Current	$V_{O} = 0.5V$ from either Supply		±110		mA
PSRR	Power Supply Rejection Ratio	$15V \le V^+ \le 17V$	72	80		dB
Is	Supply Current	No Load		4	6.5	m 4
					7.8	mA
R _{IN}	Common Mode Input	$A_V = +1$, f = 1 kHz, $R_S = 1 M\Omega$		32		МО
	Resistance					IVISZ
C _{IN}	Common Mode Input	$A_V = +1$, $R_S = 100 \text{ k}\Omega$		1.7		nF
	Capacitance					рі
R _{OUT}	Output Resistance Closed Loop	$R_F = 10 \text{ k}\Omega, \text{ f} = 1 \text{ kHz}, A_V = -1$		0.1		0
		$R_F = 10 \text{ k}\Omega, \text{ f} = 1 \text{ MHz}, A_V = -1$		0.3		22
DG	Differential Gain	NTSC, $A_V = +2$		0.12		0/
		$R_L = 150\Omega$ to V ⁺ /2				/0
DP	Differential Phase	NTSC, $A_V = +2$		0.12		dog
		$R_L = 150\Omega$ to V ⁺ /2				uey

Note 1: Absolute maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics. **Note 2:** Human body model, 1.5 k Ω in series with 100 pF. Machine Model, 0Ω in series with 200 pF.

Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150 °C Short circuit test is a momentary test. Output short circuit duration is infinite for $V_S < 6V$ at room temperature and below. For $V_S > 6V$, allowable short circuit duration is 1.5 ms.

Note 4: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)}^T T_A) / \theta_{JA}$. All numbers apply for packages soldered directly onto a PC board.

Note 5: Typical Values represent the most likely parametric norm.

Note 6: All limits are guaranteed by testing or statistical analysis.

Note 7: Positive current corresponds to current flowing into the device.

Note 8: Slew rate is the average of the rising and falling slew rates

Note 9: Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where $T_J > T_A$.

Connection Diagram

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing
5-Pin SOT23	LMH6640MF	A LI 1 A	1k Units Tape and Reel	
	LMH6640MFX		3k Units Tape and Reel	

LMH6640

LMH6640

Typical Performance Characteristics At $T_J = 25^{\circ}C$, $V^+ = 16$ V, $V^- = 0V$, $R_F = 330\Omega$ for $A_V = +2$, $R_F = 1 \ k\Omega$ for $A_V = -1$. R_L tied to $V^+/2$. Unless otherwise specified. (Continued)

Positive Output Saturation Voltage vs. V_S for Various Temperature

Output Sinking Saturation Voltage vs. I_{SINKING} for Various Temperature

Input Current Noise vs. Frequency

20086228

Output Sourcing Saturation Voltage vs. I_{SOURCING} for Various Temperature

Input Voltage Noise vs. Frequency

Typical Performance Characteristics At $T_J = 25^{\circ}C$, $V^+ = 16$ V, $V^- = 0$ V, $R_F = 330\Omega$ for $A_{V}= +2$, $R_F = -25^{\circ}C$, $V^+ = 16$ V, $V^- = 0$ V, $R_F = -230\Omega$ for $A_{V}= +2$, $R_{F}=-25^{\circ}C$, $V^+ = -16$ V, $V^- = -0$ V, $R_{F} = -230\Omega$ for $A_{V}= +2$, $R_{F}=-25^{\circ}C$, $V^+ = -16$ V, $V^- = -0$ V, $R_{F}=-230\Omega$ for $A_{V}=-20$ V, $R_{F}=-200$

Large Signal Pulse Response

Large Signal Transition

TIME (10 ns/DIV)

Small Signal Pulse Response

A_V = -1

V_S = 5V

R_L = 2 kΩ

C₁ = 10 pF

50 ns/DIV

20086214

1.5

1

0.5

0

-0.5

-1

-1.5

50 mV/DIV

OUTPUT (V)

 $R_L = 2 k\Omega$

20086215

Typical Performance Characteristics At $T_J = 25^{\circ}C$, $V^+ = 16$ V, $V^- = 0V$, $R_F = 330\Omega$ for $A_V = +2$, $R_F = 1$ k Ω for $A_V = -1$. R_L tied to V⁺/2. Unless otherwise specified. (Continued)

Large Signal Pulse Response

A_V = +1

 $V_{S} = 5V$

 $R_L = 2 k\Omega$

C_L = 10 pF

50 ns/DIV

20086208

50 mV/DIV

LMH6640

Typical Performance Characteristics At $T_J = 25^{\circ}C$, $V^+ = 16$ V, $V^- = 0V$, $R_F = 330\Omega$ for A_{V} = +2, $R_F = 1$ k Ω for $A_{V} = -1$. R_L tied to V⁺/2. Unless otherwise specified. (Continued)

0.1 dB Gain Flatness vs. Frequency Normalized

5

INPUT POWER (dBm)

10

15

20086229

-10

-10

-5

0

Typical Performance Characteristics At $T_J = 25^{\circ}C$, $V^+ = 16$ V, $V^- = 0V$, $R_F = 330\Omega$ for $A_V = +2$, $R_F = 1$ k Ω for $A_V = -1$. R_L tied to V⁺/2. Unless otherwise specified. (Continued)

LMH6640

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +44 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.