These drawings and specifications are the
property of Densitron International and may
not be reproduced, copied or used without
written permission

1. Specification subject to change without notice.

- 2. All dimensions and specifications apply to standard modules. This information may vary for modules with optional features.
- 3. All dimensions are in millimetres.
- 4. Precautions: These precautions apply equally to modules from all makers, not just Densitron. Violation of these guidelines may void the warranty and can cause problems ranging from erratic operation to catastrophic display failure.

Handling precautions:

• This device is susceptible to Electro-Static Discharge (ESD) damage. Observe Anti-Static precautions.

Power supply precautions:

- Identify and, at all times, observe absolute maximum ratings for both logic and LC drivers. Note that there is some variance between models.
- Prevent the application of reverse polarity to VDD and VSS, however briefly.

REV

- Use a clean power source free from transients. Power up conditions are occasionally "jolting" and may exceed the maximum ratings of the module.
- The +5V power of the module should also supply the power to all devices that may access the display. Don't allow the data bus to be driven when the logic supply to the module is turned off.
- DO NOT install a capacitor between the VO (contrast) pin and ground. VDD must, at all times, exceed the VO voltage level. The capacitor combines with the contrast potentiometer to form an R-C network which "holds-up" VO, at power-down, possibly damaging the module.

Operating precautions:

- DO NOT plug or unplug the module when the system is powered up.
- Minimise the cable length between the module and host MPU. (Recommended max. length 30 cm).
- For models with EL backlights, do not disable the backlight by interrupting the HV line. Unloaded inverters produce voltage extremes that may arc within a cable or at the display.
- Operate the module within the limits of the modules temperature specifications.

Mechanical / Environmental precautions:

- Improper soldering is the major cause of module difficulty. Use of flux cleaner is not recommended as they may seep under the elastomeric connection and cause display failure. Densitron recommends the use of Kester "245" no-clean solder.
- Mount the module so that it is free from torque and mechanical stress.
- Surface of LCD panel should not be touched or scratched. The display front surface is an easily scratched, plastic polariser. Avoid contact and clean only when necessary with soft, absorbent cotton dampened with petroleum benzene.
- ALWAYS employ anti-static procedure while handling the module.
- Prevent moisture build-up upon the module and observe the environmental constraints for storage temperature and humidity.
- DO NOT store in direct sunlight.
- If leakage of the liquid crystal material should occur, avoid contact with this material, particularly ingestion. If the body or clothing becomes contaminated by the liquid crystal material, wash thoroughly with water and soap.

Notes: (unless otherwise specified)

Unless otherwise	APPROVALS	DATE	DENSITRON EUROPE I TI	ח
specified: Dimensions are mm	DRAWN		BIGGIN HILL, ENGLAND	J
Tolerances are: $X = \pm 3$ $0 X = \pm 0.5$	CHECKED		100 X 64 PIXEL MINI-GRAPHIC ARRAY WITH EDGELIT LE	ED BACKLIGHT
$0.X = \pm 0.05$ $0.XX = \pm 0.05$	ISSUED		DWG.NO. LM4064	SHEET 1 of 10

1.0 **DESCRIPTION**

Graphic matrix display module consisting of a Liquid Crystal Display, CMOS driver and controller LSI, printed circuit board and edgelit Light Emitting Diode (LED) backlight.

Available LC fluid types are STN (supertwisted nematic) yellow. Available backlight colour: yellow-green.

Features include on-board DC/DC, on-board temperature compensation, software contrast control, serial or 8-bit parallel interface.

2.0 MECHANICAL CHARACTERISTICS

Item	Specifications	Unit
Package Dimensions	52(W) x 47.5(H) x 7.5(D)	mm
Display format	100 x 64	-
Character font format	defined by on-board controller (SED1560)	dots
Driving method	1/64 duty, 1/9 bias	duty
Dot size	0.35 x 0.40	mm
Dot pitch	0.38 x 0.43	mm
Character Size	1.9 x 2.98	mm
Active display area	38.0 x 27.5	mm
Viewing area	48.0 x 32.0	mm
Weight	15 approx	g

Notes: W-Width; H-Height; D-Depth.

3.0 ABSOLUTE MAXIMUM RATINGS

Vss=0V;Ta=25°C

Item	Symbol	ST	'N	Unit
		Min	Mav	
Logic supply voltage	VDD-VSS	0	7	V
LC driver supply voltage	VDD-VO	0	6	V
Operating temperature	Тор	0	+60	°C
Storage temperature (Note 1)	TST	-20	+70	
Humidity: Operating (@40°C)	-	-	85%	RH (Note 2)
Non-operating (@40°C)	-	-	95%	RH (Note 2)

Notes: 1: Tested to 100 hrs.

2: Refers to non-condensing conditions.

3. With backlight switched off.

4.0 BACKLIGHT SPECIFICATIONS:

			Ta=20°C,60%	RH,Darkroom.
Item	Symbol	Тур.	Max.	Unit
LED forward bias voltage	V _{FB}	4.1	4.3	Vrms
Nominal LED current	I _F	60	-	mA
LED peak current	IP	-	90	mA
Average luminous intensity	Iv	25	-	Cd/m ²
Peak emission wavelength	λΡ	572	-	nm
Spectral line half-width	Δλ	30	-	nm
		n/a		Ω
Life to half initial brightness	-	10		Ω
Recommended backlight inverter	-	4		-

5.0 ELECTRICAL CHARACTERISTICS

			Speci	fication	value	
Item	Symbol	Condition	Min	Тур	Max	Unit
Operating voltage	Vdd		4.5	5.0	5.5	V
High level input voltage	VIHC		0.8×Vdd	_	Vdd	
Low level input voltage	VILC		Vss	—	0.2×Vdd	
High level output voltage	Vонс		0.8×Vdd	_	Vdd	
Low level output voltage	Volc		Vss	—	0.2×Vdd	
Input leakage current	Iц	VIN=VDD or VSS	-1.0	—	1.0	μA
Output leakage current	Ilo		-3.0	—	3.0	
Static current consumption (with backlight switched off)	Issq		—	0.01	5	μΑ
Dynamic current consumption (with backlight switched off)	IDD	VDD = 5V, Ta= $25^{\circ}C$	_	200	350	μA
Input pin capacitance	CIN	Ta=25°C, f=1MHz	_	5.0	8.0	pF

6.0 INTERFACE DESCRIPTION

Pin No.	Symbol	I/O	Function
1	V _{ss}	-	Ground (0V)
2	V _{DD}	-	Logic Supply Voltage (+3/+5V)
3	D7	I/O	
4	D6	I/O	
5	D5	I/O	
6	D4	I/O	Di dinational data hua
7	D3	I/O	Bi-directional data bus
8	D2	I/O	
9	D1	I/O	
10	D0	I/O	
11	/CS1	Ι	Chin Select input. Data input/output is anabled when CS1 is I OW and CS2 is HICH
12	CS2	Ι	Chip Select hiput. Data hiput/output is enabled when CST is LOW and CS2 is fifton
13	A0	I/O	Control/Display data flag input. This is connected to the LSB of the microprocessor address bus.
			• When LOW, data on D0 to D7 is command data
			• When HIGH, data on D0 to D7 is display data
14	RD	I/O	Read
15	/WR	I/O	Write
16	SI	Ι	Serial data input
17	SCL	Ι	Serial Clock input. Data is read on the rising edge of CSL and converted to 8-bit parallel data
18	P/S	Ι	Parallel/Serial input select
			P/S Operating Mode Chip Select Data/Command Data I/O Read/Write Serial Clock
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
			LOW Serial /CS1, CS2 A0 SI WR only SCL
			In social mode, data can not be used from the DAM, and D0 to D7, DD and WD must be HICH or
			I Seriar mode, data can not be read from the KAW, and Do to D7, KD and WK must be HIGH of
10	RES	T	Reset input Setting this I OW initialises the I CM
20	C86	I	Microprocessor interface select input
20	000	1	• I OW when interfacing to 8080-series
			HIGH when interfacing to 6800-series
21	LED A	-	Power supply for LED backlight (anode)
22	N/C	-	Not connected
	1		

8.0 ELECTRO-OPTICAL CHARACTERISTICS

Item	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Contrast ratio TN, TN-H	K	$Ø=20^{\circ} \theta=0^{\circ}$	3	-	-	-
Contrast ratio STN	K	$\emptyset = 20^{\circ} \theta = 0^{\circ}$	4	-	-	-
Contrast ratio NTN-H	K	$\emptyset = 20^{\circ} \theta = 0^{\circ}$	5	-	-	-
Viewing angle TN, TN-H	Ø2-Ø1	θ=0° K≥1.4	20	-	-	Deg.
	θ	Ø=20° K=1.4	±30	-	-	Deg.
Viewing angle STN	Ø2-Ø1	θ=0° K≥1.4	40	-	-	Deg.
	θ	Ø=20° K=1.4	±30	-	-	Deg.
Viewing angle NTN-H	Ø2-Ø1	θ=0° K≥1.4	40	-	-	Deg.
	θ	Ø=20° K=1.4	±40	-	-	Deg.
Response time Rise	t _r	$\emptyset = 20^{\circ} \theta = 0^{\circ}$	-	150	240	mS
Fall	t _f	$\emptyset = 20^{\circ} \theta = 0^{\circ}$	-	350	560	mS

LM4064

DEFINITION OF CONTRAST RATIO (K)

DEFINITION OF ANGLES Ø AND θ

DWG.NO.

CONTRAST VERSUS VIEWING ANGLE

DEFINITION OF OPTICAL RESPONSE

9.0 INTERFACE TIMING CHARACTERISTICS

9.1 8080-SERIES MPU

$V_{DD} = 5V \pm 10\%$, Ta= 0 °C ~ +60 °C

		Symbol	Condition Specification value			
Item	Signal			Min.	Max.	Unit
Address hold time	A0, CS	t _{AH8}		10		nS
Address set-up time		t _{AW8}		10		
System cycle time		t _{CYC8}		200		
Control L pulse width (WR)	/WR	t _{CCLW}		22		
Control L pulse width (RD)	/RD	t _{CCLR}		77		
Control H pulse width (WR)	/WR	t _{CCHW}		172		
Control H pulse width (RD)	/RD	t _{CCHR}		117		
Data set-up time		t _{DS8}		20		
Data hold time		t _{DH8}		10		
/RD access time	D0~D7	t _{ACC8}	C _L =100pF		70	
Output disable time		t _{CH8}		10	50	
Input signal change time		t _r , t _f			15	

Notes: 1. $t_r + t_f \le (t_{CYC8} - t_{CCLW} - t_{CCHW})$ or $t_r + t_f \le (t_{CYC8} - t_{CCLR} - t_{CCHR})$ at all times.

2. For timing purposes, LOW=20% Vdd, HIGH=80% Vdd.

3. READ/WRITE operation is performed while CS (/CS1 and CS2) is active and RD (WR) signal is LOW.

$V_{DD} = 5V \pm 10\%$, Ta= 0 °C ~ +60 °C

			Symbol	Condition	Specificat	tion value	
Item		Signal			Min.	Max.	Unit
Address hold time		A0	tAH6		0	-	nS
Address set-up time	:		tAW6		0	-	
System cycle time			tCYC6		800	-	
Data set-up time		D0 to D7	tDS6		80	-	
Data hold time			tDH6		30	-	
Access time			tACC6	CL=100pF	-	280	
Output disable time			tOH6		10	200	
Enable H pulse	READ	Е	tEWHR		240	-	
width	WRITE		tEWHW		120	-	
Enable L pulse	READ	Е	tEWLR		120	-	
width	WRITE		tEWLW		120	-	
Input signal							
change time							

Notes: 1. $t_r + t_f \le (t_{CYC6} - t_{EWLW} - t_{EWHW})$ or $t_r + t_f \le (t_{CYC6} - t_{EWLR} - t_{EWHR})$ at all times. 2. For timing purposes, LOW=20% Vdd, HIGH=80% Vdd.

9.3 SERIAL INTERFACE

 $V_{DD} = 5V \pm 10\%$, Ta= 0 °C ~ +60 °C

		Symbol	Condition	Specification value		
Item	Signal			Min.	Max.	Unit
Serial clock cycle	SCL	t _{SCYC}		250		nS
SCL High pulse width		t _{SHW}		75		
SCL Low pulse width		t _{SLW}		75		
Address set-up time	A0	t _{SAS}		50		
Address hold time		t _{SAH}		200		
Data set-up time	SI	t _{SDS}		50		
Data hold time		t _{SDH}		30		
CS-SCL time	CS	t _{CSS}		30		
		t _{CSH}		400		
Input signal change time		$t_{r,}$ t _f			50	

Command												Function
Communia	A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	
Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0	Turns the LCD display ON and OFF 0: OFF 1: ON
Display START line set	0	1	0	0	1		Dis	play s	tart ad	dress		Load RAM line address of start display line (COM 0) into start line register
Page address set	0	1	0	1	0	1	1		Page a	address	8	Load page RAM page address into page address register
Column address set: higher-order 4 bits	0	1	0	0	0	0	1	Hi	gh-ord add	er colu lress	ımn	Load 4 higher-order bits of RAM column address into column address register
Column address set: lower- order 4 bits	0	1	0	0	0	0	0	Lo	w-ord add	er colu lress	mn	Load 4 lower-order bits of RAM column address into column address register
Status read	0	0	1		Statu	s bits		0	0	0	0	Read LCD controller status
Display data write	1	1	0				Wri	te data				Write data to display RAM location specified by column address and page address registers
Display data read	1	0	1				Rea	d data				Reads data from display RAM
ADC select	0	1	0	1	0	1	0	0	0	0	01	Set column scan direction 0: normal 1: reversed
Normal/reverse display	0	1	0	1	0	1	0	0	1	1	0 1	Set normal/inverted display mode 0: normal 1: reversed
All segments ON/OFF												Toggle between normal display operation and ALL SEGMENTS ON
	0	1	0	1	0	1	0	0	1	0	0 1	0: Normal display 1: All ON
Duty select	0	1	0	1	0	1	0	1	0	0	0 1	Sets LCD drive duty (1) 0: 1/48 1: 1/64
Duty + 1	0	1	0	1	0	1	0	1	0	1	0 1	Sets LCD drive duty (2) 0: Normal 1: Duty + 1
n-line reverse register set	0	1	0	0	0	1	1	No.	of reve	ersed n	-lines	Sets the period for inverting LCD drive waveform in terms of a number of lines (2- 16).
n-line reverse register release	0	1	0	0	0	1	0	0	0	0	0	Restore normal 2-frame inversion period
Read Modify write	0	1	0	1	1	1	0	0	0	0	0	Change data read mode: column address no longer incremented automatically by Read Display Data command
End	0	1	0	1	1	1	0	1	1	1	0	Cancel Read Modify write mode
Reset	0	1	0	1	1	1	0	0	0	1	0	Internal reset
Output status register set	0	1	0	1	1	0	0		Outpu	t status	5	Sets COM/SEG function of dual outputs
Built-in DC/DC generator ON/OFF	0	1	0	0	0	1	0	0	1	0	0 1	0: DC generator OFF 1: DC generator ON
Power-on completion	0	1	0	1	1	1	0	1	1	0	1	Complete the turn -on sequence
Software contrast control register set	0	1	0	1	0	0	(Contras	st cont	rol valı	ue	Sets output voltage for contrast control in contrast control register
Power save												A complex command to turn off the display while preserving display content

Note: RESET signal

n-line inversion register : 16

When power is turned ON, the display is initialised on the rising edge of /RES. Initial settings are as follows: Display : OFF Display mode : Normal n-line inversion : OFF Duty cycle : 1/64 ADC select : Normal (D0 = L)Internal power supply : OFF Serial interface register data: Cleared Column address counter : 0 Page address register : Page 0

Read/write modify : OFF Display initial line register : Line 1 Output selection circuit : Case 6

Contrast control register : 0 /RES must be LOW for at least 1 µS to reset the controller correctly. Normal operation starts 1 µS after the rising edge of /RES.

Note: for detailed description of system functions refer to Seiko-Epson operation manual for SED1560 LSI.

12.0 ENVIRONMENTAL TESTING

The test criteria for LM4064 LCM require that the module operate normally after application of the following conditions:

- High temperature operation, under normal humidity (less than 30% RH) at 50 °C for 120 hours.
- Low temperature operation, under normal humidity (less than 60% RH) at 0 °C for 120 hours (no dew).
- High temperature storage, under normal humidity (less than 30% RH) at 60 °C for 120 hours.
- Low temperature storage, under normal humidity (less than 60% RH) at -20 °C for 120 hours.
- High temperature and high humidity storage, under condition of 90% RH at 40 °C for 120 hours (no dew).
- Vibration, under the following conditions:

Frequency	: 10-55 Hz
Max. acceleration	: 5G
1 cycle time	: 1 min
Duration:	: 15 mins
rete floor (inside nackaging)	

Drop impact test, 0.7 m drop to concrete floor (inside packaging).

Expected lifetime of LM4064 module is more than 50,000 hours (under normal operating conditions).

13.0 PART NUMBER DESCRIPTION FOR AVAILABLE OPTIONS

LM40640264G100345/X

Poliriser type B = transflective positive (light background, with backlight)

LED Backlight Colour

(1)

(2)

3

(5)

G = yellow-green

Operating Temperature Range And Power Supply S = standard temperature range (0 to +50 °C) single-rail 3V or 5V with on-board DC/DC

- (4) Fluid Type And Temperature Compensation C = STN with on-board temperature compensation
 - **Background Colour**
 - G = Grey backgroundY =Yellow-Green background
- Х **Operating Voltage** Blank = 5VDC operation 3V = 3VDC operation

LM4064 DWG.NO.