

Programmable Gain AMPLIFIER

FEATURES

- DIGITALLY PROGRAMABLE GAINS: G=1, 10, 100V/V
- CMOS/TTL-COMPATIBLE INPUTS
- LOW GAIN ERROR: $\pm 0.05 \%$ max, G=10
- LOW OFFSET VOLTAGE DRIFT: $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- LOW QUIESCENT CURRENT: 2.6mA
- LOW COST
- 8-PIN PLASTIC DIP, SO-8 PACKAGES

APPLICATIONS

- DATA ACQUISITION SYSTEMS
- GENERAL PURPOSE ANALOG BOARDS
- MEDICAL INSTRUMENTATION

DESCRIPTION

The PGA103 is a programmable-gain amplifier for general purpose applications. Gains of 1,10 , or 100 are digitally selected by two CMOS/TTL-compatible inputs. The PGA103 is ideal for systems that must handle wide dynamic range signals.
The PGA103's high speed circuitry provides fast settling time, even at $\mathrm{G}=100(8 \mu \mathrm{~s}$ to $0.01 \%)$. Bandwidth is 250 kHz at $\mathrm{G}=100$, yet quiescent current is only 2.6 mA . It operates from $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supplies.
The PGA103 is available in 8 -pin plastic DIP and SO- 8 surface-mount packages, specified for the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

SPECIFICATIONS

ELECTRICAL

$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ unless otherwise specified.

PARAMETER	CONDITIONS	PGA103P, U			UNITS		
		MIN	TYP	MAX			
$\begin{aligned} & \text { INPUT } \\ & \text { Offset Voltage, RTI } \\ & G=1 \\ & G=10 \\ & G=100 \\ & \text { vs Temperature } \\ & G=1 \\ & G=10 \\ & G=100 \\ & \text { vs Power Supply } \\ & G=1 \\ & G=10 \\ & G=100 \\ & \text { Impedance } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \\ \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \end{gathered}$		$\begin{gathered} \pm 200 \\ \pm 100 \\ \pm 100 \\ \\ \pm 5 \\ \pm 2 \\ \pm 2 \\ \\ 30 \\ 10 \\ 10 \\ 10^{8} \\| 2 \\ \hline \end{gathered}$	$\begin{gathered} \pm 1500 \\ \pm 500 \\ \pm 500 \end{gathered}$ $\begin{aligned} & 70 \\ & 35 \\ & 35 \end{aligned}$	$\begin{gathered} \mu \mathrm{V} \\ \mu \mathrm{~V} \\ \mu \mathrm{~V} \\ \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{V} \\ \Omega \\| \mathrm{pF} \\ \hline \end{gathered}$		
INPUT BIAS CURRENT Initial Bias Current vs Temperature			$\begin{gathered} \pm 50 \\ \pm 100 \end{gathered}$	± 150	$\begin{gathered} \mathrm{nA} \\ \mathrm{pA} /{ }^{\circ} \mathrm{C} \end{gathered}$		
NOISE VOLTAGE, RTI $\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=100 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \\ & f_{B}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \end{aligned}$	$\mathrm{G}=100, \mathrm{R}_{\mathrm{s}}=0 \Omega$		$\begin{aligned} & 16 \\ & 11 \\ & 11 \\ & 0.6 \end{aligned}$		$\begin{gathered} \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ \mu \mathrm{Vp}-\mathrm{p} \end{gathered}$		
NOISE CURRENT $\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \\ & f_{B}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \end{aligned}$			$\begin{aligned} & 2.8 \\ & 0.3 \\ & 76 \end{aligned}$		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ pAp-p		
GAIN Gain Error $\begin{aligned} G & =1 \\ G & =10 \\ G & =100 \end{aligned}$ Gain vs Temperature $\begin{aligned} & G=1 \\ & G=10 \\ & G=100 \end{aligned}$ Nonlinearity $\begin{aligned} & G=1 \\ & G=10 \\ & G=100 \end{aligned}$			$\begin{gathered} \pm 0.005 \\ \pm 0.02 \\ \pm 0.04 \\ \\ \pm 2 \\ \pm 10 \\ \pm 30 \\ \\ \pm 0.001 \\ \pm 0.002 \\ \pm 0.004 \end{gathered}$	$\begin{gathered} \pm 0.02 \\ \pm 0.05 \\ \pm 0.2 \\ \\ \\ \\ \pm 0.003 \\ \pm 0.005 \\ \pm 0.01 \end{gathered}$	$\begin{gathered} \% \\ \% \\ \% \\ \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \text { \% of FSR } \\ \% \text { of FSR } \\ \% \text { of } \mathrm{FSR} \end{gathered}$		
OUTPUT Voltage, Positive Negative Load Capacitance, max Short-Circuit Current		$\begin{aligned} & (\mathrm{V}+)-3.5 \\ & (\mathrm{~V}-)+3.5 \end{aligned}$	$\begin{gathered} (\mathrm{V}+)-2.5 \\ (\mathrm{~V}-)+2.5 \\ 1000 \\ \pm 25 \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{pF} \\ \mathrm{~mA} \\ \hline \end{gathered}$		
FREQUENCY RESPONSE Bandwidth, -3 dB $\begin{aligned} G & =1 \\ G & =10 \\ G & =100 \end{aligned}$ Slew Rate Settling Time, 0.1\% $\begin{aligned} & G=1 \\ & G=10 \\ & G=100 \end{aligned}$ Settling Time, 0.01\% $\begin{aligned} G & =1 \\ G & =10 \\ G & =100 \end{aligned}$ Overload Recovery	$V_{o}= \pm 10 \mathrm{~V}$ 50\% Overdrive		1.5 750 250 9 2 2.2 6.5 2.5 2.5 8 2.5		MHz kHz kHz V/us $\mu \mathrm{s}$		
DIGITAL LOGIC INPUTS Digital Low Voltage Digital Low or High Current Digital High Voltage		$\begin{gathered} -5.6 \\ 2 \end{gathered}$	1	$\begin{aligned} & 0.8 \\ & V_{+} \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mu \mathrm{~A} \\ \mathrm{~V} \end{gathered}$		

SPECIFICATIONS (CONT)

ELECTRICAL

$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ unless otherwise specified.

PARAMETER	CONDITIONS	PGA103P, U			UNITS
		MIN	TYP	MAX	
POWER SUPPLY Voltage Range Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	± 4.5	$\begin{array}{r} \pm 15 \\ \pm 2.6 \\ \hline \end{array}$	$\begin{array}{r} \pm 18 \\ \pm 3.5 \\ \hline \end{array}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \hline \end{gathered}$
TEMPERATURE RANGE Specification Operating θ_{JA} : P or U Package		$\begin{aligned} & -40 \\ & -40 \end{aligned}$	100	$\begin{gathered} +85 \\ +125 \end{gathered}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$

PIN CONFIGURATION

Top View				DIP/SO-8
	1	8	V+	
	2	7	V_{O}	
	3	6	V-	
	4	5	NC	

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
PGA103P	8-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
PGA103U	SO-8 Surface-Mount	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

A ELECTROSTATIC UN DISCHARGE SENSITIVITY

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ... $\pm 18 \mathrm{~V}$	
Analog Input Voltage Range	... V- to V+
Logic Input Voltage Range V- to V+
Output Short Circuit (to ground)	. Continuous
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering,10s) $+300^{\circ} \mathrm{C}$

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER(1)
PGA103P	8-Pin Plastic DIP	006
PGA103U	SO-8 Surface-Mount	182

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix D of Burr-Brown IC Data Book.

PGA103 DIE TOPOGRAPHY

PAD	FUNCTION
1	$\mathrm{~A}_{0}$
2	$\mathrm{~A}_{1}$
$3 \mathrm{~A}, 3 \mathrm{~B}, 3 \mathrm{C}^{(1)}$	Ground
$4 \mathrm{~A}, 4 \mathrm{~B}, 4 \mathrm{C}^{(2)}$	$\mathrm{V}_{\text {I }}$
6	$\mathrm{~V}-$
7	$\mathrm{~V}_{\mathrm{O}}$
8	$\mathrm{~V}_{+}$

NC: No Connection
NOTES: (1) Connect all three indicated pads. (2) Connect all three indicated pads.
Substrate Bias: Internally connected to V-power supply.

MECHANICAL INFORMATION

	MILS (0.001")	MILLIMETERS
Die Size	$69 \times 105 \pm 5$	$1.75 \times 2.67 \pm 0.13$
Die Thickness	20 ± 3	0.51 ± 0.08
Min. Pad Size	4×4	0.1×0.1
Backing		

TYPICAL PERFORMANCE CURVES

$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise noted.

SMALL SIGNAL RESPONSE

$2 \mu \mathrm{~s} / \mathrm{div}$

APPLICATION INFORMATION

Figure 1 shows the basic connections required for operation of the PGA103. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

NOTE: (1) Low impedance ground connection required for good gain accuracy-see text.

FIGURE 1. Basic Connections.

The input and output are referred to the ground terminal, pin 3. This must be a low-impedance connection to assure good gain accuracy. A resistance of 0.1Ω in series with the ground pin will cause the gain in $\mathrm{G}=100$ to decrease by approximately 0.2%.

DIGITAL INPUTS

The digital inputs, A_{0} and A_{1}, select the gain according to the logic table in Figure 1. The digital inputs interface directly to common CMOS and TTL logic components. The logic inputs are referenced to the ground terminal, pin 3.
The logic table in Figure 1 shows that logic " 1 " on both A_{0} and A_{1} is invalid. This logic code will not cause damage, but the amplifier output will not be predictable while this code is selected. The output will recover when a valid code is selected.

The digital inputs are not latched, so a change in logic inputs immediately selects a new gain. Switching time of the logic is approximately $0.5 \mu \mathrm{~s}$. The time to respond to gain change is equal to the switching time plus the time it takes the amplifier to settle to a new output voltage in the newly selected gain (see settling time specifications).
Many applications use an external logic latch to access gain control signals from a high speed data bus. Using an external latch isolates the high speed digital bus from sensitive analog circuitry. Locate the latch circuitry as far as practical from analog circuitry to avoid coupling digital noise into the analog circuitry.

Some applications select gain of the PGA103 with switches or jumpers. Figure 2 shows pull-up resistors connected to assure a noise-free logic " 1 " when the switch or jumper is off or open. Fixed-gain applications can connect the logic inputs directly to V+ or ground (or other valid logic level) without a series resistor.

FIGURE 2. Switch or Jumper-Selected Gains.

OFFSET TRIMMING

Offset voltage is laser-trimmed to typically less than $200 \mu \mathrm{~V}$ (referred to input) in all three gains. The input-referred offset voltage can be different for each gain.

FIGURE 3. Offset Voltage Trim Circuit.
Figure 3 shows a circuit used to trim the offset voltage of the PGA103. An op amp buffers the trim voltage to provide a low impedance at the ground terminal. This is required to maintain accurate gain. Remember that the logic inputs, A_{0} and A_{1}, are referenced to this ground connection, so the logic threshold voltage will be affected by the trim voltage. This is insignificant if the offset adjustment is used only to trim offset voltage. If a large offset is used (greater than 0.1 V), be sure that the logic input signals provide valid logic levels when referred to the voltage at the ground terminal, pin 3.

FIGURE 5. Wide Input Voltage Range Amplifer.

FIGURE 4. Programmable Gain Instrumentation Amplifier.

MODEL	CHARACTERISTICS
INA103	Low Noise, $1 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ IA
INA105	$\mathrm{G}=1$ Difference Amp
INA106	$\mathrm{G}=10$ Difference Amp
INA114	Resistor-Programmed Gain, Precision
INA117	$\pm 200 V$ C-M Input Range Difference Amp
INA111	FET Input, High Speed IA
INA131	Precision, $\mathrm{G}=100$ IA

FIGURE 6. Instrumentation Amplifier with Programmable Gain Output Amp.

PACKAGING INFORMATION

ORDERABLE DEVICE	STATUS(1)	PACKAGE TYPE	PACKAGE DRAWING	PINS	PACKAGE QTY
PGA103P	OBSOLETE	PDIP	P	8	
PGA103U	ACTIVE	SOIC	D	8	100

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated

