

LM8365

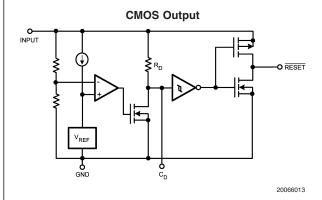
Micropower Undervoltage Sensing Circuits with Programmable Output Delay

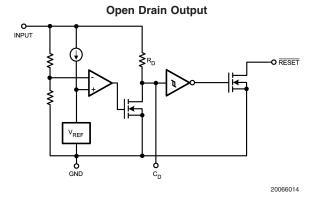
General Description

The LM8365 series are micropower undervoltage sensing circuits that are ideal for use in battery powered microprocessor based systems, where extended battery life is a key requirement.

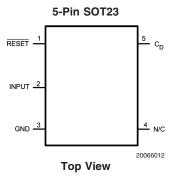
A range of threshold voltages from 2.0V to 4.5V are available with an active low, open drain or CMOS, output. These devices feature a very low quiescent current of 0.65 μ A typical. The LM8365 series features a highly accurate voltage reference, a comparator with precise thresholds and built-in hysterisis to prevent erratic reset operation, a time delayed output which can be programmed by the system designer, and guaranteed Reset operation down to 1.0V with extremely low standby current.

These devices are available in the space saving 5-Pin SOT23 surface mount package. For additional undervoltage thresholds and output options, please contact National Semiconductor.


Features


- Extremely Low Quiescent Current: 0.65µA, at V_{IN} = 2.87V
- High Accuracy Threshold Voltage (±2.5%)
- Complementary or Open Drain Output
- Programmable output delay by external Capacitor (100ms typ with 0.1µF)
- Input Voltage Range: 1V to 6V
- Surface Mount Package (5-Pin SOT23)
- Pin for pin compatible with MC33465

Applications


- Low Battery Detection
- Microprocessor Reset Controller
- Power Fail Indicator
- Battery Backup Detection

Functional Diagrams

Connection Diagram

Pin Description LM8365 В BASE PART# RESET THRESHOLD: 22: 2.2V 27: 2.7V 30: 3.0V GRADE: -45: 4.5V A: 2% THRESHOLD ACCURACY B: 2.5% THRESHOLD ACCURACY PACKAGE TYPE: MF: SOT23-5 OUTPUT TYPE: OUTPUT LOGIC: A: OPEN DRAIN L: ACTIVE LOW H: ACTIVE HIGH C: CMOS 20066015

Ordering Information

Package	Part Number	Package Marking	Threshold	Output Type	Transport Media	NSC Drawing	
5-Pin SOT23	LM8365BALMF22	F08A	2.2V	Open Drain,	1k Units Tape and Reel		
	LM8365BALMFX22	FUOA		Active Low	3k Units Tape and Reel		
	LM8365BALMF27	F07A	2.7V	Open Drain,	1k Units Tape and Reel	MF05A	
	LM8365BALMFX27	FUZA		Active Low	3k Units Tape and Reel		
	LM8365BCLMF30	F02A	3.0V	CMOS, Active	1k Units Tape and Reel	IVII USA	
	LM8365BCLMFX30	FUZA		Low	3k Units Tape and Reel		
	LM8365BALMF45	F06A	4.5V	Open Drain,	1k Units Tape and Reel		
	LM8365BALMFX45	FUOA		Active Low	3k Units Tape and Reel		

125°C

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage -0.3V to 6.5V

RESET Output Voltage -0.3V to 6.5V

RESET Output Current 70mA

Storage Temperature Range -65°C to 150°C

Mounting Temperature

Lead Temp. (Soldering 10 sec) 260°C

Junction Temperature

Operating Ratings (Note 1)

Temperature Range -40° C to 85° C Thermal Resistance to Ambient (θ_{JA}) 265° C/W

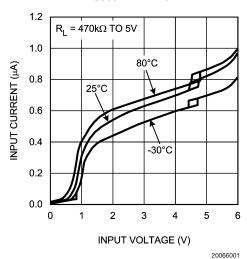
ESD Tolerance

Human Body Model 2000V Machine Model 200V

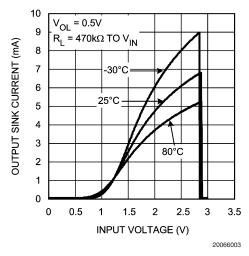
Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_A = 25$ °C.

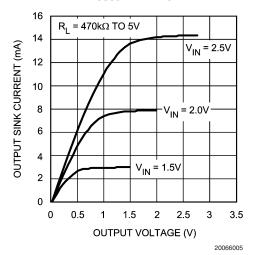
Symbol	Parameter	Conditions	Min	Тур	Max	Units	
			(Note 3)	(Note 2)	(Note 3)		
V_{DET-}		High to Low State Output					
		(V _{IN} Decreasing)					
	Detector Threshold Voltage	22 Suffix	2.145	2.2	2.255	V	
	Detector Tilleshold Voltage	27 Suffix	2.633	2.7	2.767		
		30 Suffix	2.925	3.0	3.075		
		45 Suffix	4.388	4.5	4.613		
V _{HYS}		V _{IN} Increasing					
		22 Suffix	0.066	0.110	0.154		
	Detector Threshold Hysteresis	27 Suffix	0.081	0.135	0.189	V	
		30 Suffix	0.090	0.150	0.210		
		45 Suffix	0.135	0.225	0.315		
ΔVdet/ΔT	Detector Threshold Voltage			. 100		DDM/°C	
	Temperature Coefficient			±100		PPM/°C	
V _{OH} V _{OL}	RESET Output Voltage	(CMOS Output: I _{SOURCE} = 1mA)	V _{IN} -2.1	V _{IN} -1.0	V _{IN}		
		(Open Drain or CMOS Output:		0.25	0.5	V	
		I _{SINK} = 1mA)					
I _{OL}	RESET Output Sink Current	$V_{IN} = 1.5V, V_{OL} = 0.5V$	1.0	2.5		mA	
I _{OH}	RESET Output Source Current	$V_{IN} = 4.5V, V_{OL} = 2.4V$	1.0	7.0		mA	
I _{CD}	Delay Pin Output Sink Current	$V_{IN} = 1.5V, V_{CD} = 0.5V$	0.2	1.8		mA	
R _D	Delay Resistance		0.5	1.0	2.0	MΩ	
V_{IN}	Operating Input Voltage Range		1.0		6.0	V	
I _{IN}		22 Suffix					
		V _{IN} = 2.10V		0.57	0.8		
		V _{IN} = 4.20V		0.71	1.3		
		27 Suffix					
		V _{IN} = 2.60V		0.62	0.9		
		V _{IN} = 4.70V		0.75	1.3		
	Quiescent Input Current	30 Suffix				μΑ	
		V _{IN} = 2.87V		0.65	0.9		
		V _{IN} = 5.00V		0.77	1.3		
		45 Suffix					
		V _{IN} = 4.34V		0.70	1.0		
		V _{IN} = 6.00V		0.85	1.4		

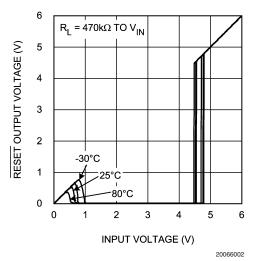

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

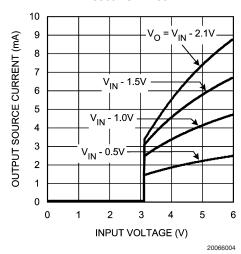
Note 2: Typical values represent the most likely parametric norm.

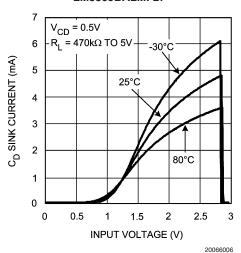

Note 3: All limits are guaranteed by testing or statistical analysis.

Typical Performance Characteristics

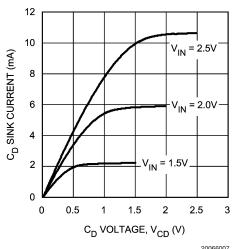

Input Current vs. Input Voltage LM8365BALMF45


Reset Output Sink Current vs. Input Voltage LM8365BALMF27

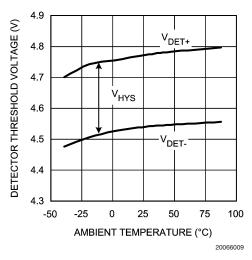

Reset Output Sink Current vs. Reset Output Voltage LM8365BALMF45


Reset Output Voltage vs. Input Voltage LM8365BALMF45

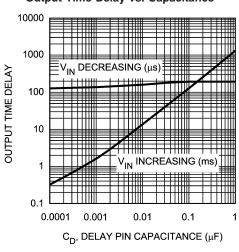
Reset Output Source Current vs. Input Voltage LM8365BCLMF30

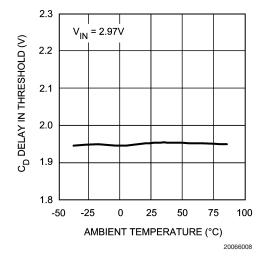


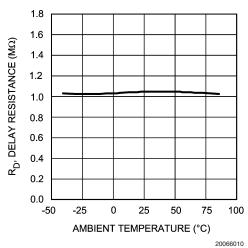
C_D Sink Current vs. Input Voltage LM8365BALMF27



Typical Performance Characteristics (Continued)


C_D Sink Current vs. C_D Voltage


Detector Threshold Voltage vs. Temperature LM8365BALMF45


Output Time Delay vs. Capacitance

C_D Delay Pin Threshold Voltage vs. Temperature LM8365BALMF27

Delay Resistance vs. Temperature

Application Notes

The propagation delay time for the LM8365 is measured using a $470 \mathrm{k}\Omega$ pull-up resistor connected to from the $\overline{\text{RESET}}$ output pin to 5V in addition to a 10pF capacitive load connected from the same pin to GND. *Figure 1* shows the timing

diagram for the measurement for the propagation delay. V_{DET+} is equal to the sum of the detector threshold, V_{DET-} , and the built in hysteresis, V_{HYS} . t_{D1} is the propagation time from High-to-Low and t_{D2} is the propagation from Low-to-High.

FIGURE 1. Propagation Delay Timing Diagrams

The LM8365 ultra-low current voltage detector was designed to monitor voltages and to provide an indication when the monitored voltage, $V_{\rm IN},$ dropped below a precisely trimmed threshold voltage. The voltage detector of the LM8365 drives a time delay generator that may be programmed for fixed lengths of time depending on the application needs. This characteristic is displayed in the typical operating timing diagram in Figure 2. $V_{\rm IN}$ is the voltage that is being monitored and as it decreases passed the precisely trimmed threshold $V_{\rm DET-}$ the Active Low $\overline{\rm RESET}$ output drops to a Logic Low state and the $C_{\rm D}$ pin drops to 0V. During this state the external capacitor connected to the $C_{\rm D}$ pin is immediately discharged by an internal N-Channel MOSFET. When $V_{\rm IN}$ increases above the threshold $V_{\rm DET-}$ ($V_{\rm DET-}$ + $V_{\rm HYS}$) the capacitor connected to the $C_{\rm D}$ pin starts to charge up to $V_{\rm IN}$

through an internal pull-up resistor R_D. Once the capacitor has charged up past the internal Delay Pin Threshold, which is typically 0.675 V_{IN}, the $\overline{\text{RESET}}$ output will revert back to it's original state. The LM8365 has built-in hysteresis to help prevent erratic reset operation when the input voltage crosses the threshold.

The LM8365 has a wide variety of applications that can take advantage of it's precision and low current consumption to monitor Input voltages even though it was designed as a reset controller in portable microprocessor based systems. It is a very cost effective and space saving device that will protect your more expensive investments of microprocessors and other devices that need a guaranteed supply voltage and time delay for proper operation.

Application Notes (Continued)

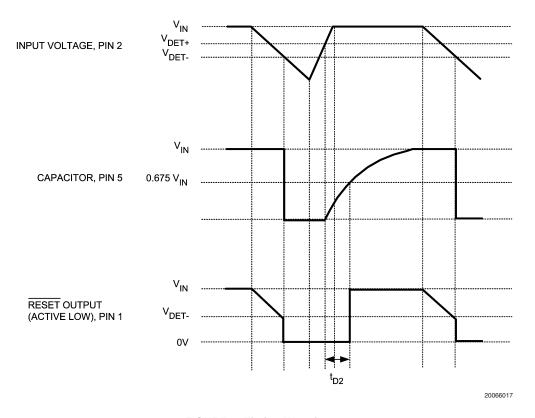
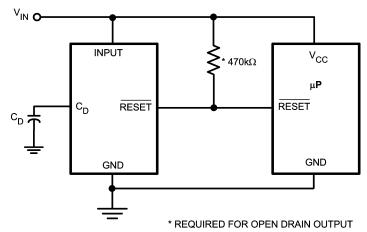



FIGURE 2. Timing Waveforms

Typical Applications

Microprocessor Reset Circuit

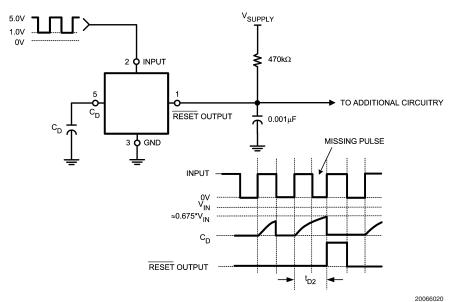
20066019

3.17V
3.00V

V_{IN} < 3.0V ON

TO ADDITIONAL CIRCUITRY

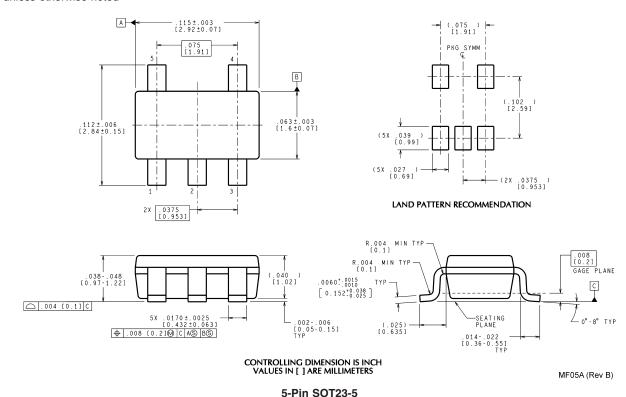
OUTPUT


3 GND

ON

TO ADDITIONAL CIRCUITRY

V_{IN} > 3.15V ON


Battery Charge Indicator Using LM8365BCLMF30

Missing Pulse Detector or Frequency Detector Using LM8365BALMF45

Physical Dimensions inches (millimeters)

unless otherwise noted

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

NSC Package Number MF05A

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com

Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com **National Semiconductor** Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560