Serial-in / Parallel-out Driver Series

Serial / Parallel 2-input Drivers

BU2098F, BU2090F, BU2090FS

- Description

Serial-in-parallel-out driver is a open drain output driver. It incorporates a built-in shift register and a latch circuit to turn on a maximum of 12 LED by a 2 -line interface, linked to a microcontroller.
A open drain output provides maximum of 25 mA current.

-Features

1) LED can be driven directly. (Output current 25 mA)
2) $8 / 12$ Bit parallel output
3) This product can be operated on low voltage.
4) Compatible with $I^{2} C$ BUS. (BU2098)
${ }^{*} I^{2} C$ BUS is a registered trademark of Phillips.
-Use
For AV equipment such as, audio stereo sets, videos and TV sets, PCs, control microcontroller mounted equipment.

- Line up

Parameter	BU2098F	BU2090F	BU2090FS	Unit
Output current	25	25		mA
Output line	8	12		lines
Package	SOP16	SOP16	SSOP-A16	-

- Thermal derating curve

Electrical characteristics
BU2098F (unless otherwise noted, $V_{D D}=5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Input High-level voltage	V_{IH}	$0.7 \mathrm{XV} \mathrm{V}_{\mathrm{DD}}$	-	-	V	
Input Low-level voltage	V_{IL}	-	-	$0.3 \mathrm{XV}_{\mathrm{DD}}$	V	
Output Low-level voltage	V_{OL}	-	-	0.4	V	$\mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}$
Input Low-level current	I_{IL}	-		2.0	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0$
Input High-level current	I_{IH}	-	-	-2.0	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$
Output leakage current	I_{OZ}	-	-	± 5.0	$\mu \mathrm{~A}$	Output=High impedance $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}}$
Static dissipation current	I_{DD}	-	-	2.0	$\mu \mathrm{~A}$	

BU2090F/FS (unless otherwise noted, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Input High-level voltage	V_{IH}	$3.5 / 2.5^{*}$	-	-	V	
Input Low-level voltage	V_{IL}	-	-	$1.5 / 0.4^{*}$	V	
Output Low-level voltage	V_{OL}	-	-	$2.0 / 1.0^{*}$	V	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$
"H" output disable current	$\mathrm{I}_{\mathrm{OZH}}$	-	-	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{O}}=25 \mathrm{~V}$
"L" output disable current	$\mathrm{I}_{\mathrm{OZL}}$	-		-5.0	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$
Static dissipation current	I_{DD}	-	-	$5.0 / 3.0^{*}$	$\mu \mathrm{~A}$	

(*the value at $5 \mathrm{~V} / 3 \mathrm{~V}$)

- Operating conditions ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Symbol	Limits		Unit
		BU2098F	BU2090F/FS	
Power Supply Voltage	V_{DD}	$+2.7 \sim 5.5$		V
Output Voltage	Vo	$0 \sim+15$	$0 \sim+25$	V

- Absolute maximum ratings

BU2098F, BU2090F/FS

Parameter	Symbol	Limits			Unit
		BU2098F	BU2090F	BU2090FS	
Power supply voltage	$V_{D D}$	$-0.5 \sim+7.0$	-0.3~+7.0V		V
Power dissipation1	Pd1	$300 *^{1}$	$300 *^{1}$	$500 *^{2}$	mW
Power dissipation2	Pd2	-	$500 *^{3}$	$650 *^{4}$	
Operating temperature range	Topr	$-40 \sim+85$			${ }^{\circ} \mathrm{C}$
Storage temperature range	Tstg	$-55 \sim+125$			${ }^{\circ} \mathrm{C}$
Output voltage	Vo	$\mathrm{V}_{\mathrm{ss}} \sim+18.0$	$\mathrm{V}_{\text {ss }}-0.3 \sim+25 \mathrm{~V}$		V
Input voltage	$\mathrm{V}_{\text {IN }}$	$-0.5 \sim V_{D D}+0.5$	$\mathrm{V}_{\mathrm{sS}}-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$		V

Allowable loss of single unit

*Reduced by $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$. (BU2098F)
$*^{1}$ Reduced by $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
$*^{2}$ Reduced by $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
$*^{3}$ Reduced by 5.0 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$. (When mounted on a board $70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ Glass-epoxy PCB)
$*^{4}$ Reduced by 6.5 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$. (When mounted on a board $70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ Glass-epoxy PCB)

BU2098F

PIN No.	Pin Name	I/O	Function
1	A0	1	
2	A1	1	Address input, internally pull-up
3	A2	1	
4	Q0		
5	Q1	-	drain output
6	Q2	0	Open drain output
7	Q3		
8	$\mathrm{V}_{\text {SS }}$	-	GND
9	Q4		
10	Q5		
11	Q6	0	Open drain output
12	Q7		
13	N.C.	-	Non connected
14	SCL	1	Serial clock input
15	SDA	I/O	Serial data input/output
16	$V_{D D}$	-	Power supply

BU2090F/FS

PIN No.	Pin Name	I/O	Function		
1	$V_{\text {SS }}$	-	GND		
2	DATA	1	Serial data input		
3	CLOCK	1	Data shift clock input (rising edge trigger) The shift data is transferred to the output when the input data logic level is high during the falling transition of the clock pulse.		
4	Q0	O	Parallel data output (Nch Open Drain FET)		
5	Q1				
6	Q2				
7	Q3				
8	Q4				
9	Q5				
10	Q6		Latch data	L	H
11	Q7		Output FET	ON	OFF
12	Q8				
13	Q9				
14	Q10				
15	Q11				
16	$V_{D D}$	-	Power supply		

-Block diagram

BU2098F

BU2090F/FS

OInterfaces

BU2090F/FS	BU2090F/FS	BU2098F
DATA, CLOCK	Q0~Q11	Q0~Q7
BU2098F	BU2098F	BU2098F
A0~A2	SDA	SCL

[BU2098F】

- AC characteristics (Unless otherwise noted, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Fast mode ${ }^{2} \mathrm{C}$ BUS		Standard mode ${ }^{2} \mathrm{C}$ C BUS		Unit
		Min.	Max.	Min.	Max.	
SCL clock frequency	fscl	0	400	0	100	kHz
Bus free time between start-stop condition	tBus	1.3	-	4.7	-	$\mu \mathrm{S}$
Hold time start condition	thD: STA	0.6	-	4.0	-	$\mu \mathrm{S}$
Low period of the SCL clock	tıow	1.3	-	4.7	-	$\mu \mathrm{S}$
High period of the SCL clock	thigh	0.6	-	4.0	-	$\mu \mathrm{S}$
Set up time Re-start condition	tSu:STA	0.6	-	4.7	-	$\mu \mathrm{S}$
Data hold time	thD: DAT	0	0.9	0	-	$\mu \mathrm{S}$
Data set up time	tSu:DAT	100	-	250	-	ns
Rise time of SDA and SCL	tR	$20+0.1 \mathrm{Cb}$	300	-	1000	ns
Fall time of SDA and SCL	tF	$20+0.1 \mathrm{Cb}$	300	-	300	ns
Set up time stop condition	tsu:sto	0.6	-	4.0	-	$\mu \mathrm{S}$
Capacitive load for SDA line and SCL line	Cb	-	400	-	400	pF

- Timing chart

Fig. 1 SDA, SCL timing chart

Function

OStart condition
The start condition is a "HIGH" to "LOW" transition of the SDA line while SCL is "HIGH".

OStop condition
The stop condition is a "LOW" to "HIGH" transition of the SDA line while SCL is "HIGH".

Fig. 2 Start / Stop condition

OAcknowledge

The master ($\mu \mathrm{p}$) puts a resistive "HIGH" level on the SDA line during the acknowledge clock pulse. The peripheral (audio processor) that acknowledge has to pull-down ("LOW") the SDA line during the acknowledge clock pulse, so that the SDA line is stable "LOW" during this clock pulse.
The slave which has been addressed has to generate an acknowledgement after the reception of each byte, otherwise the SDA line remains at the "HIGH" level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer.

Fig. 3 Acknowledge

OWrite DATA
Send the stave address from master following the start condition (S). This address consists of 7 bits. The left 1 bit (the foot bit) is fixed " 0 ". The stop condition (P) is needed to finish the data transferred. But the re-send starting condition (Sr) enables to transfer the data without STOP (P).

Fig. 4 DATA transmit

OData format

The format is following.

Table 1 for WRITE format

Slave address	$\mathrm{A} 0 \sim \mathrm{~A} 2$	Each bit can be defined by the input levels of pins A0~A3.
	$\mathrm{A} 3 \sim \mathrm{~A} 6$	These 4 bits are fixed.
Write Data	R/W	" 0 "
D0~D7	Write "1" to D0 makes Q0 pin High-impedance. And write "0" makes Q0 pin LOW. D[1:7] and Q[1:7] are same as D0 and Q0.	

Table 2 for (A2, A1, A0) to SLAVE ADDRESS

A6	A5	A4	A3	A2	A1	A0	Slave address
0	1	1	1	0	0	0	38 H
0	1	1	1	0	0	1	39H
0	1	1	1	0	1	0	3AH
0	1	1	1	0	1	1	3BH
0	1	1	1	1	0	0	3 CH
0	1	1	1	1	0	1	3DH
0	1	1	1	1	1	0	3EH
0	1	1	1	1	1	1	3FH
	Fixe						

Latch pulse \qquad

Output (Q7~Q0)

Output the write data to $\mathrm{Q} 7 \sim \mathrm{Q} 0$ at the same time.
Fig. 5 Timing chart for WRITE

Command sample for driving LEDs. These are all off. (terminal A0~A2 is open)

- RESET CONDITION

After reset, Q0~Q7 pins are ON. (LEDs are all ON.)

- RISING TIME OF POWER SUPPLY
$V_{D D}$ must rise within 10 ms . If the rise time would exceed 10 ms , it is afraid not to reset the BU2098F.

Fig. 6 Rising time of power supply

[BU2090F/FS】

-AC characteristics (unless otherwise noted, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Limit			Unit	Condition
		Min.	Typ.	Max.		
Minimum clock frequency	tw	500	-	-	ns	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
		1000	-	-	ns	$V_{D D}=3 \mathrm{~V}$
Data shift set up time	tsu	200	-	-	ns	$V_{D D}=5 \mathrm{~V}$
		300	-	-	ns	$V_{D D}=3 \mathrm{~V}$
Data shift hold time	th	200	-	-	ns	$V_{D D}=5 \mathrm{~V}$
		400	-	-	ns	$V_{D D}=3 \mathrm{~V}$
Data latch set up time	tLSUH	50	-	-	ns	$V_{D D}=5 \mathrm{~V}$
		100	-	-	ns	$V_{D D}=3 \mathrm{~V}$
Data latch hold time	tLHH	250	-	-	ns	$V_{D D}=5 \mathrm{~V}$
		500	-	-	ns	$V_{D D}=3 \mathrm{~V}$
Data latch "L" set up time	tLSUL	200	-	-	ns	$V_{\text {DD }}=5 \mathrm{~V}$
		400	-	-	ns	$V_{D D}=3 \mathrm{~V}$
Data latch "L" hold time	tLHL	250	-	-	ns	$V_{D D}=5 \mathrm{~V}$
		500	-	-	ns	$V_{D D}=3 \mathrm{~V}$

- Switching time test circuit

Fig. 7

- Switching time test waveforms

Fig. 8
[BU2098F】

Note) Diagram shows a status where a pull-up resistor is connected to output.

[BU2090F/FS]

Note1) -.-.-.- Indicates undefined output.
Note2) Output terminal is provided with a pull-up resistor.

1. Absolute maximum ratings

An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as fuses.
2. Connecting the power supply connector backward

Connecting of the power supply in reverse polarity can damage IC. Take precautions when connecting the power supply lines. An external direction diode can be added.

3. Power supply lines

Design PCB layout pattern to provide low impedance GND and supply lines. To obtain a low noise ground and supply line, separate the ground section and supply lines of the digital and analog blocks. Furthermore, for all power supply terminals to ICs, connect a capacitor between the power supply and the GND terminal. When applying electrolytic capacitors in the circuit, not that capacitance characteristic values are reduced at low temperatures.
4. GND voltage

The potential of GND pin must be minimum potential in all operating conditions.
5. Thermal design

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.
6. Inter-pin shorts and mounting errors

Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any connection error or if pins are shorted together.
7. Actions in strong electromagnetic field

Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.
8. Testing on application boards

When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during the inspection process. Ground the IC during assembly steps as an antistatic measure. Use similar precaution when transporting or storing the IC.

9. Ground Wiring Pattern

When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the ground potential of application so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring pattern of any external components, either.

10. Unused input terminals

Connect all unused input terminals to VDD or VSS in order to prevent excessive current or oscillation. Insertion of a resistor ($100 \mathrm{k} \Omega$ approx.) is also recommended.

Type Designations (Selections) for Ordering

SOP16

<Tape and Reel information>

Tape	Embossed carrier tape
Quantity	2500 pcs
Direction of feed	E2 (The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand)

SSOP-A16
<Dimension>

<Tape and Reel information>

Tape	Embossed carrier tape
Quantity	2500 pcs
Direction of feed	E2 (The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand)

- The contents described herein are correct as of March, 2008

The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO.,LTD.
Any part of this application note must not be duplicated or copied without our permission.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set

- Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer.
- The products described herein utilize silicon as the main material.

The products described herein are not designed to be X ray proof.

The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Excellence in Electronics	Contact us for further information about the products.					
	San Diego	TEL: +1-858-625-3630	FAX: +1-858-625-3670	Shanghai	TEL: +86-21-6279-2727	FAX: +86-21-6247-2066
	Atlanta	TEL: +1-770-754-5972	FAX: +1-770-754-0691	Hangzhou	TEL: +86-571-87658072	FAX: +86-571-87658071
	Boston	TEL: +1-978-371-0382	FAX: +1-928-438-7164	Nanjing	TEL: +86-25-8689-0015	FAX: +86-25-8689-0393
	Chicago	TEL: +1-847-368-1006	FAX: +1 -847-368-1008	Ningbo	TEL: +86-574-87654201	FAX: +86-574-87654208
ROHM CO, TD	Dallas	TEL: +1-469-287-5366	FAX: +1-469-362-7973	Qingdao	TEL: +86-532-5779-312	FAX:+86-532-5779-653
	Denver	TEL: +1-303-708-0908	FAX: +1-303-708-0858	Suzhou	TEL: +86-512-6807-1300	FAX: +86-512-6807-2300
	Detroit	TEL: +1-248-348-9920	FAX: +1-248-348-9942	Wuxi	TEL: +86-510-82702693	FAX: +86-510-82702992
	Nashville	TEL: +1-615-620-6700	FAX: +1-615-620-6702	Shenzhen	TEL: +86-755-8307-3008	FAX: +86-755-8307-3003
	Mexico	TEL: +52-33-3123-2001	FAX: +52-33-3123-2002	Dongguan	TEL: +86-769-8393-3320	FAX: +86-769-8398-4140
	Disseldorf	TEL: +49-2154-9210	FAX: +49-2154-921400	Fuzhou	TEL: +86-591-8801-8698	FAX: +86-591-8801-8690
	Munich	TEL: +49-8161-48310	FAX: +49-8161-483120	Guangzhou	TEL: +86-20-8364-9796	FAX: +86-20-8364-9707
	Stuttgart	TEL: +49-711-72723710	FAX: +49-711-72723720	Huizhou	TEL: +86-752-205-1054	FAX: +86-752-205-1059
	France	TEL: +33-1-5697-3060	FAX: +33-1-5697-3080	Xiamen	TEL: +86-592-238-5705	FAX: +86-592-239-8380
	United Kingdom	TEL: +44-1-908-306700	FAX: +44-1-908-235788	Zhuhai	TEL: +86-756-3232-480	FAX: +86-756-3232-460
ROTM CO., LID.	Denmark	TEL: +45-3694-4739	FAX: +45-3694-4789	Hong Kong	TEL: +852-2-740-6262	FAX: +852-2-375-8971
21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto	Barcelona	TEL: +34-9375-24320	FAX: +34-9375-24410	Taipei	TEL: +886-2-2500-6956	FAX: +886-2-2503-2869
615-8585, Japan	Hungary	TEL: +36-1-4719338	FAX: $+36-1-4719339$	Kaohsiung	TEL: +886-7-237-0881	FAX: +886-7-238-7332
TEL: +81-75-311-2121 FAX: +81-75-315-0172	Poland	TEL: +48-22-5757213	FAX: + 48-22-5757001	Singapore	TEL: +65-6332-2322	FAX: +65-6332-5662
URL http: // www. rohm. com	Russia	TEL: +7-95-980-6755	FAX: +7-95-937-8290	Philippines	TEL: +63-2-807-6872	FAX: +63-2-809-1422
	Seoul	TEL: +82-2-8182-700	FAX: +82-2-8182-715	Thailand	TEL: +66-2-254-4890	FAX: +66-2-256-6334
Published by LSI Business Promotion Dept.	Masan	TEL: +82-55-240-6234	FAX: +82-55-240-6236	Kuala Lumpur	TEL: +60-3-7958-8355	FAX: $+60-3-7958-8377$
	Dalian	TEL: +86-411-8230-8549	FAX: + 86-411-8230-8537	Penang	TEL: +60-4-2286453	FAX: +60-4-2286452
	Beijing	TEL: +86-10-8525-2483	FAX: +86-10-8525-2489	Kyoto	TEL: +81-75-365-1218	FAX: +81-75-365-1228
	Tianjin	TEL: +86-22-23029181	FAX: +86-22-23029183	Yokohama	TEL: +81-45-476-2290	FAX: +81-45-476-2295

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.

[^0]
[^0]: Copyright © 2008 ROHM CO.,LTD.
 ROHM CO., LTD. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
 TEL: +81-75-311-2121
 FAX : +81-75-315-0172

