- Dual Versions of Highly Stable SN54121 and SN74121 One Shots
- SN54221 and SN74221 Demonstrate Electrical and Switching Characteristics That Are Virtually Identical to the SN54121 and SN74121 One Shots
- Pinout Is Identical to the SN54123, SN74123, SN54LS123, and SN74LS123
- Overriding Clear Terminates Output Pulse

	MAXIMUM OUTPUT
TYPE	PULSE
LENGTH(S)	

description/ordering information

The '221 and 'LS221 devices are dual multivibrators with performance characteristics virtually identical to those of the '121 devices. Each multivibrator features a negative-transitiontriggered input and a positive-transition-triggered input, either of which can be used as an inhibit input.

SN54221, SN54LS221... J PACKAGESN74221... N PACKAGE		
SN74LS221 ... D, DB, N, OR NS PACKAGE (TOP VIEW)		
1A	$1 \cup_{16}$	V_{CC}
1B	215	$1 R_{\text {ext }} / C_{\text {ext }}$
1 $\overline{C L R}$	314	$1 \mathrm{C}_{\text {ext }}$
1可	413	1 Q
2Q	512	2 \bar{Q}
$2^{2} \mathrm{Cext}^{\text {l }}$	611	2 $\overline{C L R}$
$2 \mathrm{R}_{\text {ext }} / \mathrm{C}_{\text {ext }}$	710	2B
GND [8 9	$2 A$

SN54LS221... FK PACKAGE (TOP VIEW)

NC - No internal connection

ORDERING INFORMATION

$\mathrm{T}_{\text {A }}$	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	PDIP - N	Tube	SN74221N	SN74221N
			SN74LS221N	SN74LS221N
	SOIC - D	Tube	SN74LS221D	LS221
		Tape and reel	SN74LS221DR	
	SOP - NS	Tape and reel	SN74LS221NSR	74LS221
	SSOP - DB	Tape and reel	SN74LS221DBR	LS221
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CDIP - J	Tube	SNJ54221J	SNJ54221J
			SNJ54LS221J	SNJ54LS221J
	LCCC - FK	Tube	SNJ54LS221FK	SNJ54LS221FK

† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

description/ordering information (continued)

Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. Schmitt-trigger input circuitry (TTL hysteresis) for B input allows jitter-free triggering from inputs with transition at rates as slow as $1 \mathrm{~V} / \mathrm{s}$, providing the circuit with excellent noise immunity, typically of 1.2 V . A high immunity to V_{CC} noise, typically of 1.5 V , also is provided by internal latching circuitry.
Once fired, the outputs are independent of further transitions of the A and B inputs and are a function of the timing components, or the output pulses can be terminated by the overriding clear. Input pulses can be of any duration relative to the output pulse. Output pulse length can be varied from 35 ns to the maximum by choosing appropriate timing components. With $R_{e x t}=2 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{ext}}=0$, an output pulse typically of 30 ns is achieved that can be used as a dc-triggered reset signal. Output rise and fall times are TTL compatible and independent of pulse length. Typical triggering and clearing sequences are shown as a part of the switching characteristics waveforms.

Pulse-width stability is achieved through internal compensation and is virtually independent of V_{CC} and temperature. In most applications, pulse stability is limited only by the accuracy of external timing components.
Jitter-free operation is maintained over the full temperature and $V_{C C}$ ranges for more than six decades of timing capacitance (10 pF to $10 \mu \mathrm{~F}$) and more than one decade of timing resistance ($2 \mathrm{k} \Omega$ to $30 \mathrm{k} \Omega$ for the SN54221, $2 \mathrm{k} \Omega$ to $40 \mathrm{k} \Omega$ for the SN74221, $2 \mathrm{k} \Omega$ to $70 \mathrm{k} \Omega$ for the SN54LS221, and $2 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ for the SN74LS221). Throughout these ranges, pulse width is defined by the relationship: t_{w} (out) $=\mathrm{C}_{\text {ext }} R_{\text {ext }} \ln 2 \approx 0.7 \mathrm{C}_{\text {ext }} R_{\text {ext }}$. In circuits where pulse cutoff is not critical, timing capacitance up to $1000 \mu \mathrm{~F}$ and timing resistance as low as $1.4 \mathrm{k} \Omega$ can be used. Also, the range of jitter-free output pulse widths is extended if V_{CC} is held to 5 V and free-air temperature is $25^{\circ} \mathrm{C}$. Duty cycles as high as 90% are achieved when using maximum recommended R_{T}. Higher duty cycles are available if a certain amount of pulse-width jitter is allowed.

The variance in output pulse width from device to device typically is less than $\pm 0.5 \%$ for given external timing components. An example of this distribution for the ' 221 is shown in Figure 3. Variations in output pulse width versus supply voltage and temperature for the '221 are shown in Figures 4 and 5, respectively.
Pin assignments for these devices are identical to those of the SN54123/SN74123 or SN54LS123/SN74LS123 so that the '221 or 'LS221 devices can be substituted for those products in systems not using the retrigger by merely changing the value of $R_{\text {ext }}$ and/or $C_{e x t}$; however, the polarity of the capacitor must be changed.
FUNCTION TABLE

INPUTS				OUTPUTS	
$\overline{\text { CLR }}$	A	B	Q	$\overline{\text { Q }}$	
L	X	X	L	H	
X	H	X	L	H	
X	X	L	L	H	
H	L	\uparrow	Ω^{\dagger}	V^{\dagger}	
H	\downarrow	H	Ω^{\dagger}	V^{\dagger}	
$\uparrow \ddagger$	L	H	Ω^{\dagger}	U^{\dagger}	

\dagger Pulsed-output patterns are tested during AC switching at $25^{\circ} \mathrm{C}$ with $R_{\text {ext }}=2 \mathrm{k} \Omega$, and $C_{\text {ext }}=80 \mathrm{pF}$.
\ddagger This condition is true only if the output of the latch formed by the two NAND gates has been conditioned to the logic 1 state prior to $\overline{\mathrm{CLR}}$ going high. This latch is conditioned by taking either A high or B low while $\overline{C L R}$ is inactive (high).
timing component connections

NOTE: Due to the internal circuit, the $\mathrm{Rext} / \mathrm{C}_{\text {ext }}$ terminal never is more positive than the $\mathrm{C}_{\text {ext }}$ terminal.

schematics of inputs and outputs

SN54/74LS221

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{\mathrm{I}} \text { (see Note 1): ' }{ }^{\prime} \text { S221 ... } 7 \text {. } \mathrm{V} \\
& \text { '221 } \\
& 5.5 \mathrm{~V} \\
& \text { Package thermal impedance, } \theta_{\mathrm{JA}} \text { (see Note 2): D package .. } 73^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { DB package } 82^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { N package . .. } 67^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { NS package } 64^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)

			SN54221			SN74221			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
${ }^{\mathrm{IOH}}$	High-level output current				-800			-800	$\mu \mathrm{A}$
lOL	Low-level output current				16			16	mA
$\Delta \mathrm{V} / \Delta \mathrm{t}$	Rise or fall of input pulse rate	B input	1^{*}			1			V/s
		A input	1^{*}			1			V/us
T_{A}	Operating free-air temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS \dagger		SN54221			SN74221			UNIT		
		MIN	TYPキ	MAX	MIN	TYPキ	MAX					
$\mathrm{V}^{\text {+ }+}$	Positive-going threshold voltage, B input			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		1.55 2*			1.55		2	V
$\mathrm{V}_{\mathrm{T} \text { - }}$	Negative-going threshold voltage, B input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		0.8*	1.35		0.8	1.35		V		
$\mathrm{V}_{\text {IK }}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\boldsymbol{I}=-12 \mathrm{~mA}$	-1.5			-1.5			V		
V_{OH}		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{l} \mathrm{OH}=-800 \mu \mathrm{~A}$	2.4	3.4		2.4	3.4		V		
V_{OL}		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{IOL}=16 \mathrm{~mA}$		0.2	0.4		0.2	0.4	V		
I		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1			1	mA		
${ }^{\text {I H }}$	A input	$V_{C C}=M A X$,	$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$		
	$\overline{\mathrm{CLR}}, \mathrm{B}$ input					80			80			
IIL	A input	$V_{C C}=$ MAX,	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-1.6			-1.6	mA		
	$\overline{\text { CLR, }} \mathrm{B}$ input					-3.2			-3.2			
los§		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-20		-55	-18		-55	mA		
	Quiescent	VCo = MAX			26	50*		26	50	mA		
${ }^{\text {c }}$	Triggered	$V_{C C}=$ MAX			46	80*		46	80	mA		

* On products compliant to MIL-PRF-38535, this parameter is not production tested.
\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
timing requirements over recommended ranges of supply voltage and operating free-air temperature

			SN5	221	SN7		
			MIN	MAX	MIN	MAX	
	Pu	A or B input	50		50		
$t_{\text {w }}$	se duration	$\overline{\mathrm{CLR}}$	20		20		
$\mathrm{t}_{\text {su }}$	Setup time, inactive-state\I	$\overline{\mathrm{CLR}}$	15		15		ns
$\mathrm{R}_{\text {ext }}$	External timing resistance		1.4*	30*	1.4	40	$\mathrm{k} \Omega$
$\mathrm{C}_{\text {ext }}$	External timing capacitance		0*	1000*	0	1000	$\mu \mathrm{F}$
		$\mathrm{R}_{\text {ext }}=2 \mathrm{k} \Omega$		67\%		67\%	
	Output duty cycle	$\mathrm{R}_{\text {ext }}=$ MAX R ${ }_{\text {ext }}$		90\%		90\%	

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

II Inactive-state setup time also is referred to as recovery time.
switching characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Figures 1 and 2)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS		SN54221			SN74221			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
tPLH	A	Q	$\mathrm{C}_{\text {ext }}=80 \mathrm{pF}$,	$\mathrm{R}_{\text {ext }}=2 \mathrm{k} \Omega$		45	70		45	70	ns
	B					35	55		35	55	
tPHL	A	$\overline{\mathrm{Q}}$				50	80		50	80	
	B					40	65		40	65	
tPHL	$\overline{C L R}$	Q	$\mathrm{C}_{\text {ext }}=80 \mathrm{pF}$,	$\mathrm{R}_{\text {ext }}=2 \mathrm{k} \Omega$			27			27	ns
tPLH		\bar{Q}					40			40	
$t_{\text {w }}$	A or B	Q or \bar{Q}	$\mathrm{C}_{\text {ext }}=80 \mathrm{pF}$,	$\mathrm{R}_{\text {ext }}=2 \mathrm{k} \Omega$	70	110	150	70	110	150	ns
			$\mathrm{C}_{\text {ext }}=0$,	$\mathrm{R}_{\text {ext }}=2 \mathrm{k} \Omega$	17	30	50	17	30	50	
			$\mathrm{C}_{\text {ext }}=100 \mathrm{pF}$,	$\mathrm{R}_{\text {ext }}=10 \mathrm{k} \Omega$	650	700	750	650	700	750	
			$\mathrm{C}_{\text {ext }}=1 \mu \mathrm{~F}$,	$\mathrm{R}_{\text {ext }}=10 \mathrm{k} \Omega$	6.5*	7	7.5*	6.5	7	7.5	ms

* On products compliant to MIL-PRF-38535, this parameter is not production tested.
recommended operating conditions (see Note 4)

			SN54LS221			SN74LS221			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
${ }^{\text {IOH }}$	High-level output current				-400			-400	$\mu \mathrm{A}$
IOL	Low-level output current				4			8	mA
$\Delta \mathrm{V} / \Delta \mathrm{t}$	Rise or fall of input pulse rate	B input	1^{*}			1			V/s
		A input	1^{*}			1			V/us
T_{A}	Operating free-air temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS \dagger		SN54LS221			SN74LS221			UNIT		
		MIN	TYPキ	MAX	MIN	TYP\#	MAX					
$\mathrm{V}_{\text {+ }}$	Positive-going threshold voltage, B input			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$			1	2*		1	2	V
$\mathrm{V}_{\text {T- }}$	Negative-going threshold voltage, B input	$V_{C C}=\mathrm{MIN}$		0.7*	0.9		0.8	0.9		V		
$\mathrm{V}_{\text {IK }}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\boldsymbol{I}=-18 \mathrm{~mA}$	-1.5			-1.5			V		
V_{OH}		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.5	3.4		2.7	3.4		V		
V_{OL}		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	$\mathrm{IOL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
		$\mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5				
1			$V_{C C}=$ MAX,	$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1			0.1	mA	
IIH		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{l}}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
	A input					-0.4			-0.4			
IIL	$\overline{\mathrm{CLR}}$, B input	$V_{C C}=$ MAX,	$\mathrm{V}=0.4 \mathrm{~V}$			-0.8			-0.8	mA		
$\mathrm{l}^{\text {OS }}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-20		-100	-20		-100	mA		
	Quiescent	VCC = MAX			4.7	11		4.7	11	mA		
ICC	Triggered	VCC = MAX			19	27*		19	27			

* On products compliant to MIL-PRF-38535, this parameter is not production tested.
\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
timing requirements over recommended ranges of supply voltage and operating free-air temperature

			SN54L	S221	SN74	S221	
			MIN	MAX	MIN	MAX	UNT
		A or B	50		50		
${ }_{\text {t }}$ w	ulse duration	$\overline{\overline{C L R}}$	40		40		ns
$\mathrm{t}_{\text {su }}$	Setup time, inactive state ${ }^{\text {I }}$	$\overline{\mathrm{CLR}}$	15		15		ns
$\mathrm{R}_{\text {ext }}$	External timing resistance		1.4*	70*	1.4	100	$\mathrm{k} \Omega$
Cext	External timing capacitance		0*	1000*	0	1000	$\mu \mathrm{F}$
	put duty cycle	$\mathrm{R} T=2 \mathrm{k} \Omega$		50\%		50\%	
	dit duty cycle	$\mathrm{R}_{\mathrm{T}}=$ MAX R ${ }_{\text {ext }}$		90\%		90\%	

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

II Inactive-state setup time also is referred to as recovery time.
switching characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Figures 1 and 2)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS			4LS2			4LS2		UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
tPLH	A	Q	$\mathrm{C}_{\text {ext }}=80 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{ext}}=2 \mathrm{k} \Omega$		45	70	45 70 35 55 50 80 40 65			ns
	B					35	55				
tPHL	A	\bar{Q}				50	80				
	B					40	65				
tPHL	$\overline{C L R}$	Q	$\mathrm{C}_{\text {ext }}=80 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{ext}}=2 \mathrm{k} \Omega$		35	55		35	55	ns
tPLH		\bar{Q}				44	65		44	65	
$t_{\text {w }}$	A or B	Q or $\overline{\mathrm{Q}}$	$\mathrm{C}_{\text {ext }}=80 \mathrm{pF}$,	$\mathrm{R}_{\text {ext }}=2 \mathrm{k} \Omega$	70	120	150	70	120	150	ns
			$\mathrm{C}_{\text {ext }}=0$,	$\mathrm{R}_{\text {ext }}=2 \mathrm{k} \Omega$	20	47	70	20	47	70	
			$\mathrm{C}_{\text {ext }}=100 \mathrm{pF}$,	$\mathrm{R}_{\text {ext }}=10 \mathrm{k} \Omega$	670	740	810	670	740	810	
			$\mathrm{C}_{\text {ext }}=1 \mu \mathrm{~F}$,	$\mathrm{R}_{\text {ext }}=10 \mathrm{k} \Omega$	6^{*}	6.9	7.5*	6	6.9	7.5	ms

[^0]

CONDITION 2: TRIGGER FROM B, THEN $\overline{C L R}$

$\dagger \mathrm{A}$ is low.
Figure 1. Switching Characteristics

CONDITION 4: TRIGGERING FROM POSITIVE TRANSITION OF $\overline{C L R}$

CONDITION 5: TRIGGER FROM A, THEN $\overline{C L R}$

$\dagger \mathrm{A}$ is low.
$\ddagger B$ and CLR are high.
NOTES: A. Input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}} \approx 50 \Omega$; for $\mathrm{SN} 54 / 74221, \mathrm{t}_{\mathrm{r}} \leq 7 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 7 \mathrm{~ns}$, for $\mathrm{SN} 54 / 74 \mathrm{LS} 221, \mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$.
B. All measurements are made between the 1.5-V points of the indicated transitions for the SN54/74221 or between the 1.3-V points for the SN54/74LS221.

Figure 1. Switching Characteristics (Continued)

NOTES: A. C_{L} includes probe and jig capacitance.
B. All diodes are 1N3064 or equivalent.
C. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily.
D. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}} \approx 50 \Omega$ and, for $\mathrm{SN} 54 / 74221$, $\mathrm{t}_{\mathrm{r}} \leq 7 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 7 \mathrm{~ns}$, for SN54/74LS221, $\mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$.
E. All measurements are made between the $1.5-\mathrm{V}$ points of the indicated transitions for the SN54/74221 or between the $1.3-\mathrm{V}$ points for the SN54/74LS221.

Figure 2. Load Circuits and Voltage Waveforms

TYPICAL CHARACTERISTICS (SN54/74221 ONLY) \dagger

Figure 3

Figure 5

VARIATION IN OUTPUT PULSE
vs
SUPPLY VOLTAGE

Figure 4

Figure 6
\dagger Data for temperatures below $0^{\circ} \mathrm{C}$ and above $70^{\circ} \mathrm{C}$, and for supply voltages below 4.75 V and above 5.25 V are applicable for the SN54221 only. NOTE A: These values of resistance exceed the maximum recommended for use over the full military temperature range of the SN54221.

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
5962-8771101EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type
76042012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
7604201 EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type
7604201FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type
JM38510/31402B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
JM38510/31402BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type
JM38510/31402BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type
SN54221J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type
SN54LS221J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type
SN74221N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/A for Pkg Type
SN74221NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74LS221D	ACTIVE	SOIC	D	16	40	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS221DBR	ACTIVE	SSOP	DB	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS221DBRE4	ACTIVE	SSOP	DB	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS221DBRG4	ACTIVE	SSOP	DB	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br})$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS221DE4	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS221DG4	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS221DR	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS221DRE4	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS221DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS221N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74LS221N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI
SN74LS221NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74LS221NSR	ACTIVE	SO	NS	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS221NSRE4	ACTIVE	SO	NS	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS221NSRG4	ACTIVE	SO	NS	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SNJ54221J	ACTIVE	CDIP	J	16	1	TBD	A42	N/ A for Pkg Type
SNJ54LS221FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
SNJ54LS221J	ACTIVE	CDIP	J	16	1	TBD	A42	N/ A for Pkg Type
SNJ54LS221W	ACTIVE	CFP	W	16	1	TBD	A42	N/ A for Pkg Type

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb -Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, Tl Pb -Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
SN74LS221DBR	SSOP	DB	16	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
SN74LS221DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS221NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS221DBR	SSOP	DB	16	2000	346.0	346.0	33.0
SN74LS221DR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LS221NSR	SO	NS	16	2000	346.0	346.0	33.0

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

W (R-GDFP-F16)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F16 and JEDEC MO-092AC

D (R-PDSO-G16) PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $.006(0,15)$ per end.
D Body width does not include interlead flash. Interlead flash shall not exceed $.017(0,43)$ per side.
E. Reference JEDEC MS-012 variation AC.

D(R-PDSO-G16)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Refer to IPC7351 for alternate board design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers

Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsw.ti.com
www.ti.com/clocks
nterface.ti.com
ogic.ti.com
oower.ticom
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprt

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotiva
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontro
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	Www.ti.com/security
Telephony	Www.ti.com/telephony
Video \& Imaging	www.ti.com/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

[^0]: * On products compliant to MIL-PRF-38535, this parameter is not production tested.

