DW OR N PACKAGE SLAS075B - FEBRUARY 1989 - REVISED JULY 2000 - 8-Bit Resolution A/D Converter - Microprocessor Peripheral or Stand-Alone Operation - On-Chip 12-Channel Analog Multiplexer - Built-In Self-Test Mode - Software-Controllable Sample and Hold - Total Unadjusted Error . . . ±0.5 LSB Max - Direct Replacement for Motorola MC145041 - On-Board System Clock - End-of-Conversion (EOC) Output - Pinout and Control Signals Compatible With the TLC1542/3 10-Bit A/D Converters - CMOS Technology | PARAMETER | VALUE | | | |---------------------------------|----------------------|--|--| | Channel Acquisition/Sample Time | 16 μs | | | | Conversion Time (Max) | 20 μs | | | | Samples per Second (Max) | 25 × 10 ³ | | | | Power Dissipation (Max) | 10 mW | | | ## description The TLC542 is a CMOS converter built around an 8-bit switched-capacitor successive-approximation analog-to-digital converter. The device is designed for serial interface to a microprocessor or peripheral via a 3-state output with three inputs [including I/O CLOCK, \overline{CS} (chip select), and ADDRESS INPUT]. The TLC542 allows high-speed data transfers and (TOP VIEW) INPUT A0 [20 VCC INPUT A1 🛛 2 19 TEOC INPUT A2 [] 3 18 1/O CLOCK INPUT A3 **1** 4 ADDRESS INPUT 17 INPUT A4 [5 DATA OUT 16 INPUT A5 1 <u>cs</u> 15 INPUT A6 **∏** 7 14 REF+ INPUT A7 [13 REF-12 | INPUT A10 INPUT A8 **∏** 9 GND [11 NPUT A9 **FN PACKAGE** sample rates of up to 40,000 samples per second. In addition to the high-speed converter and versatile control logic, an on-chip 12-channel analog multiplexer can sample any one of 11 inputs or an internal *self-test* voltage, and the sample and hold is started under microprocessor control. At the end of conversion, the end-of-conversion (EOC) output pin goes high to indicate that conversion is complete. Detailed information on interfacing to most popular microprocessors is readily available from the factory. The converter incorporated in the TLC542 features differential high-impedance reference inputs that facilitate ratiometric conversion, scaling, and isolation of analog circuitry from logic and supply noises. A switched-capacitor design allows low-error (± 0.5 LSB) conversion in 20 μ s over the full operating temperature range. #### **AVAILABLE OPTIONS** | | PACKAGE | | | | |---------------|----------------------|--------------------|-----------------------|--| | TA | CHIP CARRIER
(FN) | PLASTIC DIP
(N) | SMALL OUTLINE
(DW) | | | 0°C to 70°C | _ | TLC542CN | TLC542CDW | | | -40°C to 85°C | TLC542IFN | TLC542IN | TLC542IDW | | Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. ## description (continued) The TLC542C is characterized for operation from 0° C to 70° C and the TLC542I is characterized for operation from -40° C to 85° C. ## functional block diagram ## typical equivalent inputs #### INPUT CIRCUIT IMPEDANCE DURING SAMPLING MODE ## INPUT CIRCUIT IMPEDANCE DURING HOLD MODE #### operating sequence NOTES: A. To minimize errors caused by noise at the chip select input, the internal circuitry waits for two rising edges and one falling edge of the internal system clock after \overline{CS} before responding to control input signals. The \overline{CS} setup time is given by the $t_{SU(CS)}$ specifications. Therefore, no attempt should be made to clock-in an address until the minimum chip select setup time has elapsed. B. The output becomes 3-state on $\overline{\text{CS}}$ going high or on the negative edge of the eighth I/O clock. # absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage, V _{CC} (see Note 1) | 6.5 V | |--|----------------------------------| | Input voltage range (any input) | | | Output voltage range, VO | 0.3 V to V _{CC} + 0.3 V | | Peak input current range (any input), I _{p-p)} | ±20 mA | | Peak total input current (all inputs), Ip | ±30 mA | | Operating free-air temperature range: TLC542C | | | TLC542I | –40°C to 85°C | | Storage temperature range, T _{stg} | 65°C to 150°C | | Case temperature for 10 seconds, T _C : FN package | | | Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DW | or N package 260°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values are with respect to digital ground with REF- and GND wired together (unless otherwise noted). # TLC542C, TLC542I 8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 11 INPUTS SLAS075B - FEBRUARY 1989 - REVISED JULY 2000 ## recommended operating conditions, V_{CC} = 4.75 to 5.5 V | | | IIM | NOM | MAX | UNIT | | |---|--|--------------------|-------|-----------------------|------|--| | Supply voltage, V _{CC} | | 4.7 | 5 5 | 5.5 | V | | | Positive reference voltage, V _{ref+} (see Note | 2) | V _{ref} . | - Vcc | V _{CC} + 0.1 | V | | | Negative reference voltage, V _{ref} (see Note | 2) | -0. | 0 | V _{ref+} | V | | | Differential reference voltage, V _{ref+} – V _{ref-} | (see Note 2) | | Vcc | V _{CC} + 0.2 | V | | | Analog input voltage (see Note 3) | | |) | VCC | V | | | High-level control input voltage, VIH | | | 2 | | V | | | Low-level control input voltage, V _{IL} | | | | 8.0 | V | | | Setup time, address bits at data input before | e I/O CLOCK↑, t _{SU(A)} | 40 |) | | ns | | | Hold time, address bits after I/O CLOCK↑, t | n(A) | |) | | ns | | | Hold time, $\overline{\text{CS}}$ low after 8th I/O CLOCK 1, th(CS) | | |) | | ns | | | Setup time, CS low before clocking in first a | ddress bit, t _{Su(CS)} (see Note 4) | 3. | 3 | | μs | | | Input/output clock frequency, f(clock I/O) | | | 1.1 | | MHz | | | Input/output clock high, t _{W(H I/O)} | | 40- | 1 | | ns | | | Input/output clock low, t _{W(L I/O)} | | 40- | 1 | | ns | | | I/O CLOCK transition time, t _f (see Note 3) | f _{clock} (I/O) ≤ 525 kHz | | | 100 | | | | 1/O CLOCK transition time, if (see Note 3) | fclock(I/O) > 525 kHz | | | 40 | ns | | | Operating free air temperature Ta | TLC542C | |) | 70 | °C | | | Operating free-air temperature, T _A | TLC542I | -4 |) | 85 | | | - NOTES: 2. Analog input voltages greater than that applied to REF+ convert as all ones (11111111), while input voltages less than that applied to REF- convert as all zeros (00000000). For proper operation, REF+ must be at least 1 V higher than REF-. Also, the total unadjusted error may increase as this differential reference voltage falls below 4.75 V. - 3. This is the time required for the clock input signal to fall from VIH min to VIL max or to rise from VIL max to VIH min. In the vicinity of normal room temperature, the devices function with input clock transition time as slow as 2 µs for remote data acquisition applications where the sensor and the A/D converter are placed several feet away from the controlling microprocessor. - To minimize errors caused by noise at the chip select input, the internal circuitry waits for two rising edges and one falling edge of the internal system clock after $\overline{\text{CS}}$ ↓ before responding to control input signals. The $\overline{\text{CS}}$ setup time is given by the $t_{\text{SU}(CS)}$ specifications. Therefore, no attempt should be made to clock-in address data until the minimum chip select setup time has elapsed. ## electrical characteristics over recommended operating temperature range, $V_{CC} = V_{ref+} = 4.75 \text{ V}$ to 5.5 V, $f_{(clock I/O)} = 1.1$ MHz (unless otherwise noted) | | PARAME | TER | TEST CONDITIO | NS | MIN | TYP [†] | MAX | UNIT | |------------------|---|--------------------------|---|---------------------------|-----|------------------|------|------| | Vон | High-level output voltage (D | DATA OUT) | V _{CC} = 4.75 V, | I _{OH} = -360 μA | 2.4 | | | V | | VOL | Low-level output voltage | | $V_{CC} = 4.75 \text{ V},$ | I _{OL} = 1.6 mA | | | 0.4 | V | | | Off-state (high-impedance state) output current | | $V_O = V_{CC}$ | CS at V _{CC} | | | 10 | | | | | | $V_{O} = 0$, | CS at V _{CC} | | | -10 | μΑ | | lιΗ | High-level input current | | VI = VCC | | | 0.005 | 2 | μΑ | | Iլլ | I _{IL} Low-level input current | | V _I = 0 | | | -0.005 | -2.5 | μΑ | | ICC | Operating supply current | | CS at 0 V | | | 1.2 | 2 | mA | | | Selected channel leakage current | | Selected channe unselected chann | | | | 0.4 | 4 | | | | | Selected channel at 0 V and unselected channel at V _{CC} | | | | -0.4 | μА | | I _{ref} | Maximum static analog refe | erence current into REF+ | $V_{ref+} = V_{CC}$ | V _{ref} _ = GND | | | 10 | μΑ | | C. | Input capacitance | Analog inputs | | | | 7 | 55 | pF | | Ci | | Control inputs | | | | 5 | 15 | þг | [†] All typical values are at $T_A = 25$ °C. # TLC542C, TLC542I 8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 11 INPUTS SLAS075B - FEBRUARY 1989 - REVISED JULY 2000 # operating characteristics over recommended operating free-air temperature range, $V_{CC} = V_{ref+} = 4.75$ to 5.5 V, $f_{(clock\ I/O)} = 1$ MHZ | | PARAMETER | TEST CONDITIONS | MIN | TYP† | MAX | UNIT | |-------------------------------------|---|---|-------------------|------|-------------------|------| | EL | Linearity error (see Note 5) | | | | ±0.5 | LSB | | E _{ZS} | Zero-scale error (see Note 6) | See Note 2 | | | ±0.5 | LSB | | E _{FS} | Full-scale error (see Note 6) | See Note 2 | | | ±0.5 | LSB | | | Total unadjusted error (see Note 7) | | | | ±0.5 | LSB | | | Self-test output code | Input A11 address = 1011,
See Note 8 | 01111101
(126) | 128 | 10000011
(130) | | | t _{C(1)} | Conversion time | See operating sequence | | | 20 | μs | | t _{C(2)} | Total access and conversion cycle time | See operating sequence | | | 40 | μs | | t(acq) | Channel acquisition time (sample cycle) | See operating sequence | | | 16 | μs | | t _(V) | Time output data remains valid after I/O CLK \downarrow | See Figure 5 | 10 | | | ns | | ^t d(IO-DATA) | Delay time, I/O CLK↓ to data output valid | See Figure 5 | | | 400 | ns | | td(IO-EOC) | Delay time, 8th I/O CLK↓ to EOC↓ | See Figure 6 | | | 500 | ns | | td(EOC-DATA) | Delay time, EOC [↑] to data out (MSB) | See Figure 7 | | | 400 | ns | | tPZH, tPZL | Delay time, CS↓ to data out (MSB) | See Figure 2 | | | 3.4 | μs | | t _{PHZ} , t _{PLZ} | Delay time, CS↑ to data out (MSB) | See Figure 2 | | | 150 | ns | | tr(EOC) | Rise time | See Figure 7 | | | 100 | ns | | tf(EOC) | Fall time | See Figure 6 | | | 100 | ns | | ^t r(bus) | Data bus rise time | See Figure 5 | | | 300 | ns | | tf(bus) | Data bus fall time | See Figure 5 | | | 300 | ns | [†] All typical values are at $T_A = 25$ °C. NOTES: 2. Analog input voltages greater than that applied to REF+ convert to all ones (11111111), while input voltages less than that applied to REF- convert to all zeros (00000000). For proper operation, REF+ must be at least 1 V higher than REF-. Also, the total unadjusted error may increase as this differential reference voltage falls below 4.75 V. - 5. Linearity error is the maximum deviation from the best straight line through the A/D transfer characteristics. - 6. Zero-scale error is the difference between 00000000 and the converted output for zero input voltage; full-scale error is the difference between 11111111 and the converted output for full-scale input voltage. - 7. Total unadjusted error is the sum of linearity, zero-scale, and full-scale errors. - 8. Both the input address and the output codes are expressed in positive logic. The A11 analog input signal is internally generated and is used for test purposes. #### PARAMETER MEASUREMENT INFORMATION Figure 1. Load Circuits Figure 2. CS to Data Output Timing Figure 3. Address Timing Figure 4. Figure 4. CS to I/O CLOCK Timing ## PARAMETER MEASUREMENT INFORMATION Figure 5. Data Output Timing Figure 6. EOC Timing Figure 7. Data Output to EOC Timing #### **APPLICATION INFORMATION** ### simplified analog input analysis Using the equivalent circuit in Figure 8, the time required to charge the analog input capacitance from 0 to V_S within 1/2 LSB can be derived as follows: The capacitance charging voltage is given by $$V_{C} = V_{S} \left(1 - e^{-t_{C}/R_{t}C_{i}} \right)$$ (1) Where: $$R_t = R_s + r_i$$ The final voltage to 1/2 LSB is given by $$V_C (1/2 LSB) = V_S - (V_S/512)$$ (2) Equating equation 1 to equation 2 and solving for time t_c gives $$V_{S} - (V_{S}/512) = V_{S} \left(1 - e^{-t_{C}/R_{t}C_{i}} \right)$$ (3) and $$t_{C} (1/2 LSB) = R_{t} \times C_{i} \times ln(512)$$ $$\tag{4}$$ Therefore, with the values given the time for the analog input signal to settle is $$t_{\rm C} (1/2 \text{ LSB}) = (R_{\rm S} + 1 \text{ k}\Omega) \times 60 \text{ pF} \times \ln(512)$$ (5) This time must be less than the converter sample time shown in the timing diagrams. V_I = Input Voltage at INPUT A0-A10 VS = External Driving Source Voltage R_S = Source Resistance ri = Input Resistance C_i = Input Capacitance - Noise and distortion for the source must be equivalent to the resolution of the converter. - . Rs must be real at the input frequency. Figure 8. Equivalent Input Circuit Including the Driving Source [†] Driving source requirements: #### PRINCIPLES OF OPERATION The TLC542 is a complete data acquisition system on a single chip. The device includes such functions as analog multiplexer, sample and hold, 8-bit A/D converter, data and control registers, and control logic. Three control inputs (I/O CLOCK, $\overline{\text{CS}}$ (chip select), and ADDRESS INPUT) are included for flexibility and access speed. These control inputs and a TTL-compatible 3-state output are intended for serial communications with a microprocessor or microcomputer. With judicious interface timing, the TLC542 can complete a conversion in 20 μ s, while complete input-conversion-output cycles can be repeated every 40 μ s. Furthermore, this fast conversion can be executed on any of 11 inputs or its built-in self-test and in any order desired by the controlling processor. When \overline{CS} is high, the DATA OUT terminal is in a 3-state condition, and the ADDRESS INPUT and I/O CLOCK terminals are disabled. When additional TLC542 devices are used, this feature allows each of these terminals, with the exception of the \overline{CS} terminal, to share a control logic point with their counterpart terminals on additional A/D devices. Thus, this feature minimizes the control logic terminals required when using multiple A/D devices. The control sequence is designed to minimize the time and effort required to initiate conversion and obtain the conversion result. A normal control sequence is as follows: - 1. \overline{CS} is brought low. To minimize errors caused by noise at the \overline{CS} input, the internal circuitry waits for two rising edges and then a falling edge of the internal system clock before recognizing the low \overline{CS} transition. The MSB of the result of the previous conversion automatically appears on the DATA OUT terminal. - 2. On the first four rising edges of the I/O CLOCK, a new positive-logic multiplexer address is shifted in, with the MSB of this address shifted first. The negative edges of these four I/O CLOCK pulses shift out the second, third, fourth, and fifth most significant bits of the result of the previous conversion. The on-chip sample and hold begins sampling the newly addressed analog input after the fourth falling edge of the I/O CLOCK. The sampling operation basically involves charging the internal capacitors to the level of the analog input voltage. - 3. Three clock cycles are applied to the I/O CLOCK terminal and the sixth, seventh, and eighth conversion bits are shifted out on the negative edges of these clock cycles. - 4. The final eighth clock cycle is applied to the I/O CLOCK terminal. The falling edge of this clock cycle initiates a 12-system clock (≈ 12 μs) additional sampling period while the output is in the high-impedance state. Conversion is then performed during the next 20 μs. After this final I/O CLOCK cycle, CS must go high or the I/O CLOCK must remain low for at least 20 μs to allow for the conversion function. CS can be kept low during periods of multiple conversion. If CS is taken high, it must remain high until the end of conversion. Otherwise, a valid falling edge of CS causes a reset condition, which aborts the conversion process. A new conversion may be started and the ongoing conversion simultaneously aborted by performing steps 1 through 4 before the 20- μ s conversion time has elapsed. Such action yields the conversion result of the previous conversion and not the ongoing conversion. The end-of-conversion (EOC) output goes low on the negative edge of the eighth I/O CLOCK. The subsequent low-to-high transition of EOC indicates the A/D conversion is complete and the conversion is ready for transfer. #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 2000, Texas Instruments Incorporated